PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Shear Tests of Bolt Rods Under Static and Dynamic Loading

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the methodology and results of single shear tests of bolt rods under dynamic impact loading generated by means of a drop hammer. Comparative analysis was also performed for bolt rod load capacity, stress and shear work under static and dynamic (impact) loading. The developed method of single shear testing of bolt rods under impact loading makes it possible to obtain repeatable test results concerning maximum bolt rod shearing force, shear stress and shear work values. Comparative shear tests of four types of bolt rods under static and impact loading showed that the APB-type bolt rods made of AP770 steel, which was characterised by having the highest strength, exhibited the greatest shear work. AM22- type bolt rods exhibited a very similar work value. Though the AM22-type bolt rods made of A500sh steel demonstrated lower strength than the APB-type bolts, as well as a smaller diameter and cross section, they dissipated the impact energy better thanks to their higher plasticity. This could indicate the direction of optimisation for bolt rods in order to increase their impact strength. Mathematical relationships were also formulated for selected tests, describing the real single shear courses F d =f(t ) of bolts under impact loading. The obtained relationships could be applied in the load assessment process of bolt rods intended for use under roof caving, tremor and rock burst conditions.
Wydawca
Rocznik
Strony
151--167
Opis fizyczny
Bibliogr. 66 poz., tab., rys.
Twórcy
  • Central Mining Institute, Katowice, Poland
Bibliografia
  • [1] ArcelorMittal Kryvyi Rih. (2016). PJSC Product Catalogue. https://ukraine.arcelormittal.com/images/pdf/product_ catalog_en.pdf. Accessed 01 December 2018
  • [2] ASTM D7401-08, Standard Test Methods for Laboratory Determination of Rock Anchor Capacities by Pull and Drop Tests (Withdrawn 2017), ASTM International, West Conshohocken, PA, 2008.
  • [3] ASTM F432-13, Standard Specification for Roof and Rock Bolts and Accessories, ASTM International, West Conshohocken, PA, 2013
  • [4] Aziz N., Rink O., Rasekh H., Hawkins E., Mirzaghorbanali A., Yang G., Khaleghparast S., Mills K., Nemcik J. and Li X., (2017). Single shear testing of various cable bolts used in Australian mines, in Naj Aziz and Bob Kininmonth (eds.), Proceedings of the 17th Coal Operators’ Conference, Mining Engineering, University of Wollongong, 8-10 February 2017, 222–230.
  • [5] Aziz N., Jalalifar H., Remennikov A., Sinclair S and Green A, (2008). Optimisation of the Bolt Profile Configuration for Load Transfer Enhancement, in Aziz, N (ed), Coal 2008: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 2008, 125–131.
  • [6] Aziz, N, Pratt, D & Williams, R, (2003). Double Shear Testing of Bolts, in Aziz, N (ed), Coal 2003: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 2003, 154–161.
  • [7] Aziz N., Rasekh H., Mirzaghorbanali A., Yang G., Khaleghparast S., Nemcik J. (2018). An Experimental Study on the Shear Performance of Fully Encapsulated Cable Bolts in Single Shear Test. Rock Mechanics and Rock Engineering, Volume 51, Issue 7, 2207–2221.
  • [8] BS 7861-1:2007, Strata reinforcement support system components used in coal mines – Part 1: Specification for rockbolting. British Standards Institution.
  • [9] BS EN 1537:2000, Execution of special geotechnical work – Ground anchors. British Standards Institution.
  • [10] BS EN 10204:2004, Metallic products. Types of inspection documents. British Standards Institution.
  • [11] Burtan Z., Chlebowski D., Cieślik J, Zorychta A. (2017). Analiza parametrów sejsmiczności indukowanej górotworu w rejonach eksploatacyjnych O/ZG Rudna. [The analysis of induced seismicity of the rock strata in the stope regions in the Rudna mine] Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 97, 145–162 (in Polish).
  • [12] Cała M., Flisiak J., Tajduś A. (2001). Mechanizm współpracy kotwi z górotworem o zróżnicowanej budowie. [The interaction between a rock bolt and a rock mass with varied structure]. Biblioteka Szkoły Eksploatacji Podziemnej. Seria z Lampką Górniczą 8. Kraków (in Polish).
  • [13] Craig P., Aziz N. (2010) Shear testing of 28 mm hollow strand” TG” cable bolt, Coal Operators’ Conference, University of Wollongong, Wollongong, 171–179.
  • [14] DIN 21521-1:1990-07, Gebirgsanker für den Bergbau und den Tunnelbau – Begriffe [German Standard: Rock bolts for mining and tunnelling; terms], Beuth Verlag GmbH (in German).
  • [15] DIN 21521-2:1993-02, Gebirgsanker für den Bergbau und den Tunnelbau – Allgemeine Anforderungen für Gebirgsanker aus Stahl – Prüfungen [German Standard: Rock bolts for mining and tunnel support; general specifications for steel-bolts; tests, testing methods], Beuth Verlag GmbH (in German).
  • [16] Dobrzański L.A. (1998). Metaloznawstwo z podstawami nauki o materiałach. [Metal science with the basics of materials science] Wydawnictwo Naukowo-Techniczne, Warszawa (in Polish).
  • [17] Dubiński J., Konopko W. (2000). Tąpania: ocena, prognoza, zwalczanie [Tremors: evaluation, forecast, elimination]. Główny Instytut Górnictwa, Katowice (in Polish).
  • [18] Dubiński J., Mutke G. (1996). Characteristics of mining tremors within the near-wave field zone. Pure and Applied Geophysics 147(2), 249–261.
  • [19] Drzewiecki, J. 2002. The collapse of the mining workings due to movements of rocks. Proceedings of the International Scientific-Technical Symposium ‘Rockburst 2002’. The State of Research and Prevention. Central Mining Institute, Katowice, Poland [in Polish].
  • [20] Fuławka K., Mertuszka P., Pytel W. (2018) Monitoring of the stability of underground workings in Polish copper mines conditions, E3S Web Conf., Volume 29, No. 00008, 1–14.
  • [21] Gilbert D., Mirzaghorbanali A., Li X., Rasekh H., Aziz N., Nemcik J. (2015). Strength Properties of Fibre Glass Dowels Used for Strata Reinforcement in Coal Mines. In: 15th Coal Operators’ Conference. The Australasian Institute of Mining and Metallurgy and Mine Managers Association of Australia, University of Wollongong, Wollongong, 365–375.
  • [22] Gogolewska A., Kaźmierczak M. (2014). Aktywność sejsmiczna w wybranych polach eksploatacyjnych w KGHM Polska Miedź S.A. O/ZG Rudna. [Seismic activity in chosen mining fields in KGHM Polska Miedź S.A. O/ZG Rudna copper ore mine] CUPRUM – Czasopismo Naukowo-Techniczne Górnictwa Rud 4(73), 35–54. (in Polish).
  • [23] Haile A.T., Le Bron K. (2001). Simulated rockburst experiment - evaluation of rock bolt reinforcement performance. SAIMM The Journal of The South African Institute of Mining and Metallurgy 101(5), 247–252.
  • [24] Halliday D., Resnick R., Walker J. (2007). Podstawy Fizyki, Tom 1. [Fundamentals of Physics, Part 1] Wydawnictwo Naukowe PWN, Warszawa (in Polish).
  • [25] Jalalifar, H., Aziz, N. I. & Hadi, M. N. (2005). Rock and bolt properties and load transfer mechanism in ground reinforcement. 20th World Mining Congress 2005: Mining and Sustainable Development (pp. 629-635). Iran: Geological Survey of Iran.
  • [26] Jalalifar, Hossein, A new approach in determining the load transfer mechanism in fully grouted bolts, PhD thesis, School of Civil, Mining and Environmental Engineering, University of Wollongong, 2006. http://ro.uow.edu.au/theses/855.
  • [27] Jurczak W. (2007). Wpływ prędkości odkształcenia na właściwości mechaniczne stopu AlZn5Mg2CrZr i stali kadłubowej kat. A. [Effect of shape of notch and strain rate on dynamic properties of AlZn5Mg2CrZr alloy] Zeszyty Naukowe Akademii Marynarki Wojennej 48(4), 37–47. (in Polish).
  • [28] Kidybiński A. (Edited by) (2009). Stateczność górotworu i obudowy przy łącznym obciążeniu statycznym i dynamicznym. [Rock mass and mining support stability under combined static and dynamic loads] Główny Instytut Górnictwa, Katowice (in Polish).
  • [29] Kinslov R. (Edited by) (1970). High-Velocity Impact Phenomena. Academic Press, New York, London.
  • [30] Konowalski K. (2005). Ćwiczenia laboratoryjne z wytrzymałości materiałów. Statyczna próba ścinania. [Laboratory exercises on material strength. Static shear test.] Politechnika Szczecińska, Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Szczecin. (in Polish).
  • [31] Labrie D., Doucet C., Plouffe M. (2008). Design guidelines for the dynamic behaviour of ground support tendons. Phase I and II. CANMET-MMSL, Ottawa.
  • [32] Li C.C., Stjern G., Myrvang A. (2014). A review on the performance of conventional and energy-absorbing rock bolts. Journal of Rock Mechanics and Geotechnical Engineering 6(4), 315–327.
  • [33] Li L., Hagan P.C., Saydam S., Hebblewhite B., Li Y. (2016). Parametric Study of Rock bolt Shear Behaviour by Double Shear Test. Rock Mechanics and Rock Engineering 49(12), 4787–4797.
  • [34] Li, X., Yang, G., Nemcik, J., Mirzaghorbanali, A. & Aziz, N. (2019). Numerical investigation of the shear behaviour of a cable bolt in single shear test. Tunnelling and Underground Space Technology, Volume 84, February 2019, 227–236.
  • [35] Milev A.M., Spottiswoode S.M. (2005). Strong ground motion and site response in deep South African mines. SAIMM The Journal of The South African Institute of Mining and Metallurgy 105(7), 515–524.
  • [36] Milev A.M., Spottiswoode S.M., Rorke A.J., Finnie G.J. (2001). Seismic monitoring of a simulated rockburst on a wall of an underground tunnel. SAIMM The Journal of The South African Institute of Mining and Metallurgy 101(5), 253–260.
  • [37] Minova Arnall. (2018). Kotwie wklejane typu APP, APG, APB Product Catalogue. http://www.arnall.com.pl/kotwie-wklejane-typu-app-apg-apb. Accessed 01 December 2018.
  • [38] Mirzaghorbanali, A., Rasekh, H., Aziz, N., Yang, G., Khaleghparast, S., & Nemcik, J.A. (2017). Shear strength properties of cable bolts using a new double shear instrument, experimental study, and numerical simulation. Tunnelling and Underground Space Technology, Volume 70, November 2017, 240–253.
  • [39] Mutke G. (2007). Charakterystyka drgań wywołanych wstrząsami górniczymi w odległościach bliskich źródła sejsmicznego w aspekcie oceny zagrożenia tąpnięciem. [Characteristics of near-field ground motion resulting from mining tremors to assessing of rockbursts hazard] Prace naukowe Głównego Instytutu Górnictwa No 872, Katowice. (in Polish).
  • [40] Mutke G., Masny W., Prusek S. (2016). Peak particle velocity as an indicator of the dynamic load exerted on the support of underground workings. Acta Geodyn. Geomater., Vol. 13, No. 4 (184), 367–378.
  • [41] Niedbalski Z., Małkowski P., Majcherczyk T. (2013). Monitoring of stand-and-roof-bolting support: Design optimization. Acta Geodyn. Geomater., Vol. 10, No. 2 (170), 215–226.
  • [42] Nierobisz, A. (2004). Analiza wpływu obciążeń dynamicznych na zachowanie się kotwi. [Influence analysis of dynamic charges on anchor maintenance]. Prace Naukowe GIG. Górnictwo i Środowisko/Główny Instytut Górnictwa, (2), 79–105. (in Polish).
  • [43] Nierobisz A., Pytlik A., Nowak H. (2001). Charakterystyka pracy kotwi przy obciążeniach dynamicznych w świetle badań stanowiskowych. [Performance characteristic of bolts under dynamic loads in the light of stand testing]. In: Nowoczesne Technologie Górnicze 2000 – Kotwienie. [Modern Mining Technology 2001. Bolting] Wydział Górnictwa i Geologii, Politechnika Śląska, Gliwice, 307–322. (in Polish).
  • [44] Niezgodziński M.E., Niezgodziński T. (1996). Wzory, wykresy i tablice wytrzymałościowe. [Formulas, charts and strength tables. 7th edn.] Wydawnictwo Naukowo-Techniczne, Warszawa. (in Polish)
  • [45] Plouffe M., Anderson T., Judge K. (2008). Rock bolt testing under dynamic conditions at CANMET-MMSL. In: Stacey TR, Malan D (ed) The 6th International Symposium on Ground Support in Mining and Civil Engineering Construction. Cape Town, 581–596.
  • [46] PN-G-15091:1998, Kotwie górnicze. Wymagania [Polish Standard: Rock bolts. Requirements]. Polski Komitet Normalizacyjny, Warszawa (in Polish).
  • [47] PN-G-15092:1999, Kotwie górnicze. Badania [Polish Standard: Rock bolts. Testing]. Polski Komitet Normalizacyjny, Warszawa (in Polish).
  • [48] PN-H-93215:1982, Walcówka i pręty stalowe do zbrojenia betonu.( Wycofana w 2012) [Rolled steel and steel bars for concrete reinforcement. (Withdrawn 2012)]. Polski Komitet Normalizacyjny, Warszawa (in Polish).
  • [49] Pytlik, A., Prusek, S., & Masny, W. (2016). A methodology for laboratory testing of rockbolts used in underground mines under dynamic loading conditions. Journal of the Southern African Institute of Mining and Metallurgy, 116(12), 1101–1110.
  • [50] Prusek S., Masny W., Lubosik Z., Pytlik A. (2016). Support performance in conditions of dynamic load. In: 24th World Mining Congress Proceedings. Unerground Mining. IBRAM, Rio de Janeiro, 427–439.
  • [51] Pytel, W. (2003). Rock mass — mine workings interaction model for Polish copper mine conditions. International Journal of Rock Mechanics and Mining Sciences, 40(4), 497–526.
  • [52] Pytel W.M., Mertuszka P.P., Jones T., Paprocki H. (2019). Numerical Simulations of Geomechanical State of Rock Mass Prior to Seismic Events Occurrence—Case Study from a Polish Copper Mine Aided by FEM 3D Approach. In: Widzyk-Capehart E., Hekmat A., Singhal R. (eds) Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection - MPES 2018. Springer, Cham, 417–427.
  • [53] Pytlik A., (2015a). Graniczne wartości obciążenia dynamicznego powodujące niszczenie okładzin górniczych. [Limit values of dynamic load causing destruction of mining lining] Przegląd Górniczy 5, 78–84. (in Polish).
  • [54] Pytlik A. (2015b). Process characteristics of hydraulic legs equipped with safety valves at dynamic load caused by a mining tremor. Archives of Mining Sciences 60(2), 595–612.
  • [55] Pytlik A. (2018). Tests on hydraulic props equipped with yield valves at dynamic load modelling a rock burst. Archives of Mining Sciences 63(2), 477–489.
  • [56] Pytlik A. (2019). Tests of steel arch and rock bolt support resistance to static and dynamic loading induced by suspended monorail transportation. Studia Geotechnica et Mechanica, 2019; 41(2); 81–92.
  • [57] Pytlik A., Prusek S., Masny W. (2016). Methodology for laboratory testing of rock bolts used in underground mines under dynamic loading conditions. SAIMM Journal of The Southern African Institute of Mining and Metallurgy 116(12), 1101–1110.
  • [58] Rasekh H., Aziz N., Mirzaghorbanali A., Nemcik J., Li X., Yang G., Khaleghparast S. (2017). Double shear testing of cable bolts with no concrete face contacts. Coal Operators’ Conference, University of Wollongong, Wollongong 231–239.
  • [59] SANS 1408:2019 (ED. 2.01), Mechanical components for tendon based rock support systems. The South African Bureau of Standards.
  • [60] SANS 920:2011 (ED. 2.03), Steel bars for concrete reinforcement. The South African Bureau of Standards.
  • [61] Sengani F. (2018). Trials of the Garford hybrid dynamic bolt reinforcement system at a deep level gold mine in South Africa. SAIMM The Journal of The Southern African Institute of Mining and Metallurgy 118(3), 289–296.
  • [62] Shirzadegan S., Nordlund E., Zhang P. (2016a). In-situ dynamic testing of rock support at LKAB Kiirunavaara mine. In: Nordlund E, Jones TH, Eitzenberger A (eds) Proceedings of the 8th International Symposium on Ground Support in Mining and Underground. Luleå University of Technology, Luleå, 1–12.
  • [63] Shirzadegan S., Nordlund E., Zhang P. (2016b). Large Scale Dynamic Testing of Rock Support System at Kiirunavaara Underground Mine. Rock Mechanics and Rock Engineering 49(7), 2773–2794.
  • [64] Skrzypkowski K., Korzeniowski W., Zagórski K., Dudek P. (2017). Application of Long Expansion Rock Bolt Support in the Underground Mines of Legnica–Głogów Copper District. Studia Geotechnica et Mechanica, Vol. 39, No. 3, 2017, 47–57.
  • [65] Sjöberg J., Dahnér C., Malmgren L., Perman F. (2011). Forensic analysis of a rock burst event at the Kiirunavaara Mine – results and implications for the future. In: Sainsbury D, Hart R, Detournay C, Nelson M (ed) Continuum and Distinct Element Numerical Modeling in Geomechanics. Itasca International Inc., Minneapolis, 67–74.
  • [66] Yang G., Aziz N., Rasekh H., Khaleghparast S., Li X., Nemcik J. (2018). Profile of Sheared Cable Bolts Strand Wires. Coal Operators’ Conference, University of Wollongong, Wollongong, February 2018, 343–352.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-804f2bde-6e87-4808-9f83-8ba81f30bf5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.