Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
3,3’-Diamino-4,4’-azoxyfurazan (DAAF) is the principal component of an insensitive booster explosive; refined DAAF and DAAF surface-coated with Viton A were prepared. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) were employed to characterize the morphology, composition, and thermal decomposition of these samples. The impact sensitivity and theoretical detonation velocity of DAAF-based composites were also measured and analyzed. The results showed that DAAF surface-coated with Viton A was successfully obtained, and the impact sensitivity of DAAF/Viton A composites was much lower than that of crude DAAF. In addition, DAAF/Viton A composites exhibited better thermal stability compared to crude DAAF and refined DAAF. The theoretical detonation velocity of DAAF/Viton A composites and TATB/Viton A composites are roughly the same. Therefore, there is still great potential for DAAF to be used as the main explosive component of a booster explosive.
Słowa kluczowe
Rocznik
Tom
Strony
445--455
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Shanxi Engineering Technology Research Center for Ultrafine Powder, School of Environment and Safety Engineering, North University of China, Shanxi 030051, China
autor
- Shanxi Engineering Technology Research Center for Ultrafine Powder, School of Environment and Safety Engineering, North University of China, Shanxi 030051, China
autor
- Shanxi Engineering Technology Research Center for Ultrafine Powder, School of Environment and Safety Engineering, North University of China, Shanxi 030051, China
autor
- Shanxi Engineering Technology Research Center for Ultrafine Powder, School of Environment and Safety Engineering, North University of China, Shanxi 030051, China
autor
- Shanxi Engineering Technology Research Center for Ultrafine Powder, School of Environment and Safety Engineering, North University of China, Shanxi 030051, China
Bibliografia
- [1] Xu, W.; An, C.; Wang, J.; Dong, J.; Geng, X. Preparation and Properties of an Insensitive Booster Explosive Based on LLM-105. Propellants Explos. Pyrotech. 2013, 38(1): 136-141.
- [2] Agrawal, J. P. Some New High Energy Materials and Their Formulations for Specialized Applications. Propellants Explos. Pyrotech. 2005, 30(5): 316-328.
- [3] Wang, X. F.; Dai, R. L.; Jian, T. U. Formulation Design of the Insensitive Booster Composition JHB-1. (in Chinese) Initiators Pyrotech. 2002, 40(2): 30-32.
- [4] Wang, B. G.; Zhang, J. L.; Chen, Y. F.; Tao, C. PBX Booster Explosive Based on HMX/TATB. (in Chinese) Chin. J. Energ. Mater. 2007, 15(1): 9-11.
- [5] Sheremeteev, A. B. Chemistry of Furazans Fused to Fived-membered Rings. Heterocycl. Chem. 1995, 32(2): 371-384.
- [6] And, A. B. S.; Kulagina, V. O.; Ivanova, E. A. Zero-Hydrogen Furazan Macrocycles with Oxy and Azo Bridges. J. Org. Chem. 1996, 61(4): 1510-1511.
- [7] Hou, C. H.; Jia, X. L.; Wang, J. Y. Preparation of Refinement HMX by Non-solvent and Its Performance Characterization. (in Chinese) Chin. J. Explos. Propellants 2016, 39(4): 27-36.
- [8] Wang, J. Y.; Ye, B. Y.; An, C. W.; Wu, B. D. Preparation and Properties of Surfacecoated HMX with Viton and Graphene Oxide. J. Energ. Mater. 2016, 34(3): 235-245.
- [9] Song, X.; Wang, Y.; An, C. Dependence of Particle Morphology and Size on the Mechanical Sensitivity and Thermal Stability of Octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine. J. Hazard. Mater. 2008, 159(2-3): 222-229.
- [10] Kissinger, H. E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29(11): 1702-1706.
- [11] Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 11(38): 1881-1886.
- [12] Boswell, P. G. On the Calculation of Activation Energies Using a Modified Kissinger Method. J. Thermal Anal. 1980, 18(11): 353-358.
- [13] An, C. W.; Guo, X. D.; Song, X. L. Preparation and Safety of Well-dispersed RDX Particles Coated with Cured HTPB. J. Energ. Mater. 2009, 27(2): 118-132.
- [14] Talawar, M. B.; Agarwal, A. P.; Anniyappan, M. Method for Preparation of Fine TATB (2-5 μm) and Its Evaluation in Plastic Bonded Explosive (PBX) Formulations. J. Hazard. Mater. 2006, 137(3): 1848-1852.
- [15] Dobratz, B. M.; Crawford, P. C. Properties of Chemical Explosives and Explosive Simulants. Int. J. Neurosci. 1972, 51(3-4): 339-340.
- [16] Wang, J.; An, C.; Li, G.; Liang, L.; Xu, W.; Wen, K. Preparation and Performances of Castable HTPB/CL-20 Booster Explosives. Propellants Explos. Pyrotech. 2011, 36(1): 34-41.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80458388-d63c-4b33-b020-0e76d82c8037