PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Negative feature selection algorithm for anomaly detection in real time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anomaly detection methods are of common use in many fields, including databases and large computer systems. This article presents new algorithm based on negative feature selection, which can be used to find anomalies in real time. Proposed algorithm, called Negative Feature Selection algorithm (NegFS) can be also used as first step for preprocessing data analyzed by neural networks, rule-based systems or other anomaly detection tools, to speed up the process for large and very large datasets of different types.
Rocznik
Strony
15--23
Opis fizyczny
Bibliogr. 10 poz., tab., wykr.
Twórcy
autor
  • Warsaw University of Technology Institute of Control and Industrial Electronics Koszykowa St. 75, 00-662, Warsaw, Poland
  • Warsaw University of Technology Institute of Control and Industrial Electronics Koszykowa St. 75, 00-662, Warsaw, Poland
Bibliografia
  • 1. D. Hawkins, (1980), Identification of Outliers, Chapman and Hall.
  • 2. Sandeep Kumar, (1995), Classification and detection of computer intrusions, PhD. Thesis, Purdue University.
  • 3. T. Lane, C.E. Brodley, (1997), Sequence Matching and Learning in Anomaly Detection for Computer Security, AAAI (American Institute of Aeronautics and Astronautics) Workshop: AI Approaches to Fraud Detection and Risk Management, pages 43-49.
  • 4. C.C. Aggarwal, P. Yu, (2001), Outlier Detection for High Dimensional Data, Proceedings of the ACM SIGMOD Conference, pages 37-46.
  • 5. R. Xu, T. Qian, G. Zhang, (2010), A Novel Anomaly Detection Technique based on Limited Anomalous Data, AIAA (American Institute of Aeronautics and Astronautics) Info- tech® Aerospace 2010, Atlanta.
  • 6. A. Frank, A. Asuncion, (2010UCI Machine Learning Repository. [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.
  • 7. A. Soule, K. Salamatian, N. Taft, (2005), Combining Filtering and Statistical Methods for Anomaly Detection, IMC (Internet Measurement Conference) ’05 Proceedings, pages 331-344.
  • 8. Gerhard Münz, (2009), Traffic Anomaly Detection and Cause Identification Using Flow- Level Measurements, PhD Thesis, Technische Universität München.
  • 9. Varun Chandola, Arindam Banerjee, Vipin Kumar, (2009), Anomaly Detection: A Survey, ACM Computing Surveys, Vol. 41(3), Article 15.
  • 10. D. Olszewski, Fraud Detection in Telecommunications Using Kullback-Leibler Divergence and Latent Dirichlet Allocation, In A. Dobnikar, U. Lotric, and B. Ster (Eds.): ICANNGA 2011, Part II, LNCS 6594, pp. 71-80, Springer 2011.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8043fd15-9641-43cf-a92b-28fa152a6c5d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.