Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Climate change is a major threat to mangrove ecosystems worldwide but particularly those in arid regions that exist near the limit of tolerance to extremes in temperature, precipitation, and salinity. Here we examine Persian Gulf arid mangrove ecosystems from the Nayband and Mond Protected Area in the south-west region of Iran to determine the ability of tidal mangrove forests to respond to rapid urban and industrial development, sea-level rise (SLR), and temperature and precipitation changes. Sea level has been rising by approximately 4 mm yr−1 in this region and might be intensified by subsidence on the order of 1-2 mm yr−1 due to natural phenomena as well as anthropogenic activities associated with fluid extraction. We use remote sensing along with statistical analysis to effectively monitor mangrove area changes over 60 years and infer responses to past environmental trends. Our spatiotemporal analysis demonstrates expansion in some areas and reduction in others. NDVI (Normalized Difference Vegetation Index) results indicate that Nayband mangroves are healthy and expanded between the years of 1990 and 2002 which could be in response to rising temperatures and above-average precipitation. However, NDVI changes after 2002 demonstrate the mangrove health and area have decreased which could be in response to industrial and urban development that occurred immediately after 1997. The natural stresses in this extreme system are been exacerbated by climate change and anthropogenic pressures as such it is essential to develop ways to reduce vulnerability through strategic management planning.
Czasopismo
Rocznik
Tom
Strony
99--114
Opis fizyczny
Bibliogr. 110 poz., rys., tab., wykr.
Twórcy
autor
- Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
autor
- School of Geosciences, University of South Florida, Florida, USA
autor
- Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
Bibliografia
- [1] Abel, N., Gorddard, R., Harman, B., Leitch, A., Langridge, J., Ryan, A., Heyenga, S., 2011. Sea level rise, coastal development and planned retreat: analytical framework, governance principles and an Australian case study. Environ. Sci. Policy 14 (3), 279-288. https://doi.org/10.1016/j.envsci.2010.12.002.
- [2] Adame, M. F., Reef, R., Santini, N. S., Najera, E., Turschwell, M. P., Hayes, M. A., Masque, P., Lovelock, C. E., 2020. Mangroves in arid regions: Ecology, threats, and opportunities. Estuar. Coast. Shelf Sci. art no. 106796. https://doi.org/10.1016/j.ecss.2020.106796.
- [3] Almahasheer, H., 2018. Spatial coverage of mangrove communities in the Arabian Gulf. Environ. Monit. Assess. 190 (2), art. no. 85. https://doi.org/10.1007/s10661-018-6472-2.
- [4] Almahasheer, H., Al-Taisan, W., Mohamed, M. K., 2013. Mangrove deterioration in Tarut Bay on the eastern province of the Kingdom of Saudi Arabia. Pakhtunkhwa. J. Life Sci. 1 (02), 49-59.
- [5] Alongi, D. M., 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76 (1), 1-13. https://doi.org/10.1016/j.ecss.2007.08.024.
- [6] Alongi, D. M., 2015. The impact of climate change on mangrowe forests. Curr. Clim. Chang. Rep. 1 (1), 30-39. https://doi.org/10.1007/s40641-015-0002-x.
- [7] Alongi, D. M., 2018. Mangrove forests. In: Blue Carbon: Coastal Sequestration for Climate Change Mitigation. Springer International Publ, Cham, 23-36. https://doi.org/10.1007/978-3-319-91698-9.
- [8] Arshad, M., Eid, E. M., Hasan, M., 2020. Mangrove health along the hyper-arid southern Red Sea coast of Saudi Arabia. Environ. Monit. Assess. 192 (3), 1-15. https://doi.org/10.1007/s10661-020-8140-6.
- [9] Asfaw, A., Simane, B., Hassen, A., Bantider, A., 2018. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather. Clim. Extremes. 19, 29-41. https://doi.org/10.1016/j.wace.2017.12.002.
- [10] Bartholy, J., Pongracz, R., 2005. Extremes of ground-based and satellite measurements in the vegetation period for the Carpathian Basin. Phys. Chem. Earth Pt. A/B/C 30 (1-3), 81-89. https://doi.org/10.1016/j.pce.2004.08.012.
- [11] Binh, T. N. K. D., Vromant, N., Hung, N. T., Hens, L., Boon, E. K., 2005. Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau peninsula, Vietnam. Environ. Dev. Sustain. 7 (4), 519-536. https://doi.org/10.1007/s10668-004-6001-z.
- [12] Breithaupt, J. L., Hurst, N., Steinmuller, H. E., Duga, E., Smoak, J. M., Kominoski, J. S., Chambers, L. G., 2019. Biogeochemical impacts of storm surge sediments in coastal wetlands: Hurricane Irma and the Florida Everglades. Estuaries Coast. 43 (5), 1090-1103. https://doi.org/10.1007/s12237-019-00607-0.
- [13] Bryant, M., 1981. The Persian Gulf: Pollution and Development. Environ. Conserv 8 (1), 44. https://doi.org/10.1017/S0376892900026692.
- [14] Burns, K. A., Codi, S., Swannell, R. J. P., Duke, N. C., 1999. Assessing the oil degradation potential of endogenous micro-organisms in tropical marine wetlands. Mangroves and Salt Marshes 3 (2), 67-84. https://doi.org/10.1023/A:1009968101790.
- [15] Caissie, D., 2006. The thermal regime of rivers: a review. Freshw. Biol. 51 (8), 1389-1406. https://doi.org/10.1111/j.1365-2427.2006.01597.x.
- [16] Cavanaugh, K. C., Kellner, J. R., Forde, A. J., Gruner, D. S., Parker, J. D., Rodriguez, W., Feller, I. C., 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. PNAS USA 111 (2), 723-727. https://doi.org/10.1073/pnas.1315800111.
- [17] Chimner, R. A., Fry, B., Kaneshiro, M. Y., Cormier, N., 2006. Current Extent and Historical Expansion of Introduced Mangroves on O’ahu, Hawai’i. Pac. Sci. 60 (3), 377-383. https://doi.org/10.1353/psc.2006.0013.
- [18] Davari, A., Khorasani, N., Danehkar, A., 2013. Comparison of Heavy Metal Concentration in Bidekhun, Basatin and Melgonze Mangrove Forests. Iran. J. Appl. Ecol. 1 (2), 15-26 (in Persian).
- [19] Dehghani, M., Nabipour, I., Dobaradaran, S., Godarzi, H., 2014. Cd and Pb concentrations in the surface sediments of the Asaluyeh Bay, Iran. JCHR 3 (1), 22-30. http://jhr.ssu.ac.ir/article-1-156-fa.html.
- [20] Duke, N. C., 2016. Oil spill impacts on mangroves: recommendations for operational planning and action based on a global review. Mar. Pollut. Bull. 109 (2), 700-715. https://doi.org/10.1016/j.marpolbul.2016.06.082.
- [21] Ellison, J. C., 2015. Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetl. Ecol. Manag. 23 (2), 115-137. https://doi.org/10.1007/s11273-014-9397-8.
- [22] Etemadi, H., Samadi, S., Sharifikia, M., 2014. Uncertainty analysis of statistical downscaling models using general circulation model over an international wetland. Clim. Dyn. 42 (11-12), 2899-2920. https://doi.org/10.1007/s00382-013-1855-0.
- [23] Etemadi, H., Samadi, S. Z., Sharifikia, M., Smoak, J. M., 2016. Assessment of climate change downscaling and non-stationarity on the spatial pattern of a mangrove ecosystem in an arid coastal region of southern Iran. Theor. Appl. Climatol. 126 (1-2), 35-49. https://doi.org/10.1007/s00704-015-1552-5.
- [24] Etemadi, H., Smoak, J. M., Karami, J., 2018. Land use change assessment in coastal mangrove forests of Iran utilizing satellite imagery and CA-Markov algorithms to monitor and predict future change. Environ. Earth. Sci 77 (5). art. no. 208. https://doi.org/10.1007/s12665-018-7392-8.
- [25] FAO, 2007. The world’s mangroves 1980-2005. FAO Forestry Paper, Forest Resources Division. FAO, Rome, 77.
- [26] Feher, L. C., Osland, M. J., Griffith, K. T., Grace, J. B., Howard, R. J., Stagg, C. L., Enwright, N. M., Krauss, K. W., Gabler, C. A., Day, R. H., Rogers, K., 2017. Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere. 8 (10), art. no. e01956. https://doi.org/10.1002/ecs2.1956.
- [27] Feng, Z., Tan, G., Xia, J., Shu, C., Chen, P., Wu, M., Wu, X., 2020. Dynamics of mangrove forests in Shenzhen Bay in response to natural and anthropogenic factors from 1988 to 2017. J. Hydrol. 591, art. no. 125271. https://doi.org/10.1016/j.jhydrol.2020.125271.
- [28] Field, C. D., 1995. Impact of expected climate change on mangroves. In: Wong, Y. S, Tam, N. F. Y. (Eds.), Asia-Pacific Symposium on Mangrove Ecosystems. Springer, Dordrecht, 75-81. https://doi.org/10.1007/978-94-011-0289-6_10.
- [29] Fielding, E. J., Blom, R. G., Goldstein, R. M., 1998. Rapid subsidence over oil fields measured by SAR interferometry. Geophys. Res. Lett. 25 (17), 3215-3218. https://doi.org/10.1029/98GL52260.
- [30] Friedrichs, C. T., Perry, J. E., 2001. Tidal salt marsh morpho-dynamics: a synthesis. J. Coast. Res. 27, 7-37.
- [31] Ghosh, M. K., Kumar, L., Roy, C., 2015. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J. Photogramm. Remote Sens. 101, 137-144. https://doi.org/10.1016/j.isprsjprs.2014.12.009.
- [32] Gilman, E. L., Ellison, J., Duke, N. C., Field, C., 2008. Threats to mangroves from climate change and adaptation options: a review. Aquat. Bot. 89 (2), 237-250. https://doi.org/10.1016/j.aquabot.2007.12.009.
- [33] Gilman, E. L., Ellison, J., Jungblut, V., Van Lavieren, H., Wilson, L., Areki, F., Brighouse, G., Bungitak, J., Dus, E., Henry, M., Kilman, M., 2006. Adapting to Pacific Island mangrove responses to sea level rise and climate change. Clim. Res. 32 (3), 161-176. https://doi.org/10.3354/cr032161.
- [34] Giri, C., Long, J., Abbas, S., Murali, R. M., Qamer, F. M., Pengra, B., Thau, D., 2015. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 148, 101-111. https://doi.org/10.1016/j.jenvman.2014.01.020.
- [35] Giri, C., Pengra, B., Zhu, Z., Singh, A., Tieszen, L. L., 2007. Monitoring mangrove forest dynamics of the Sundarbans in Bangladesh and India using multi-temporal satellite data from 1973 to 2000. Estuar. Coast. Shelf Sci. 73 (1-2), 91-100. https://doi.org/10.1016/j.ecss.2006.12.019.
- [36] Godoy, M., Lacerda, L., 2015. Mangroves response to climate change: a review of recent findings on mangrove extension and distribution. Ana. Acad. Bras. Cienc. 87, 651-667. https://doi.org/10.1590/0001-3765201520150055.
- [37] Goharnejad, H., Shamsai, A., Hosseini, S. A., 2013. Vulnerability assessment of southern coastal areas of Iran to sea level rise: evaluation of climate change impact. Oceanologia 55 (3), 611-637. https://doi.org/10.5697/oc.55-3.611.
- [38] Green, E. P., Mumby, P. J., Edwards, A. J., Clark, C. D., Ellis, A. C., 1997. Estimating leaf area index of mangroves from satellite data. Aquat. Bot. 58 (1), 11-19. https://doi.org/10.1016/S0304-3770(97)00013-2.
- [39] Hadjimitsis, D. G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M. G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C. R. I., 2010. Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10 (1), 89-95. https://doi.org/10.5194/nhess-10-89-2010.
- [40] Hamilton, S. E., Casey, D., 2016. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25 (6), 729-738. https://doi.org/10.1111/geb.12449.
- [41] Hassanzadeh, S., Hosseinibalam, F., Rezaei-Latifi, A., 2011. Numerical modelling of salinity variations due to wind and thermohaline forcing in the Persian Gulf. Appl. Math. Model. 35 (3), 1512-1537. https://doi.org/10.1016/j.apm.2010.09.029.
- [42] Hoff, R. Z., Michel, J., 2014. Oil Spills in Mangroves: Planning and response considerations United States. NOAA Ocean Service, Office of Response and Restoration. Ntnl. Gov. Publ., USA, 96 pp.
- [43] Hu, L., Li, W., Xu, B., 2018. Monitoring mangrove forest change in China from 1990 to 2015 using Landsat-derived spectra-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinf. 73, 88-98. https://doi.org/10.1016/j.jag.2018.04.001.
- [44] Ibrahim, H. D., Xue, P., Eltahir, E. A., 2020. Multiple Salinity Equilibria and Resilience of Persian/Arabian Gulf Basin Salinity to Brine Discharge. Front. Mar. Sci. 7, art. no. 573. https://doi.org/10.3389/fmars.2020.00573.
- [45] IPCC, 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1056 pp.
- [46] IPCC, 2013. Climate Change 2013. The physical Science Basis. Summary for policymakers. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, New York, 1535 pp.
- [47] IPCC, 2014. Climate change 2014: impacts, adaptation, and vulnerability. Cambridge Univ. Press, New York, 1132 pp.
- [48] Irani, M., Massah Bavani, A., Bohluly, A., Alizadeh Katak Lahijani, H., 2017. Sea Level Rise in Persian Gulf and Oman Sea Due to Climate Change in the Future Periods. JPHGR 49 (4), 603-614. https://doi.org/10.22059/jphgr.2018.221101.1006966.
- [49] Jayanthi, M., Thirumurthy, S., Nagaraj, G., Muralidhar, M., Ravichandran, P., 2018. Spatial and temporal changes in mangrove cover across the protected and unprotected forests of India. Estuar. Coast. Shelf Sci. 213, 81-91. https://doi.org/10.1016/j.ecss.2018.08.016.
- [50] Kalhori, A., Kokya, A., 2012. Evaluation of Anthropogenic Impacts on Soiland Regolith Materials Based on BCR Sequential Extraction Analysis. Int. J. Environ. Res. 6 (1), 185-194. https://doi.org/10.22059/ijer.2011.485.
- [51] Kemp, A. C., Horton, B. P., Donnelly, J. P., Mann, M. E., Vermeer, M., Rahmstorf, S., 2011. Climate related sea-level variations over the past two millennia. PNAS USA 108 (27), 11017-11022. https://doi.org/10.1073/pnas.1015619108.
- [52] Kendall, M. G., 1975. Rank correlation methods. Charles Griffin, London, 202 pp.
- [53] Kennedy, R. E., Cohen, W. B., Schroeder, T. A., 2007. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 110 (3), 370-386. https://doi.org/10.1016/j.rse.2007.03.010.
- [54] Ketelaar, V. B. H., 2009. Subsidence due to hydrocarbon production in the Netherlands. In: Satellite radar interferometry: Subsidence monitoring techniques. Springer, Dordrecht, 7-26. https://doi.org/10.1007/978-1-4020-9428-6_2.
- [55] Kharin, V. V., Zwiers, F. W., Zhang, X., Hegerl, G. C., 2007. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 20 (8), 1419-1444. https://doi.org/10.1175/JCLI4066.1.
- [56] Kouhgardi, E., Shakerdargah, E., 2015. Effect of Pollutions on Mangrove Forests of Nayband National Marine Park. World Academy of Science, Engineering and Technology. Int. J. Environ. Ecol. Eng. 9 (4), 1.
- [57] Kovacs, J. M., Flores-Verdugo, F., Wang, J., Aspden, L. P., 2004. Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquat. Bot. 80 (1), 13-22. https://doi.org/10.1016/j.aquabot.2004.06.001.
- [58] Krauss, K. W., From, A. S., Doyle, T. W., Doyle, T. J., Barry, M. J., 2011. Sea-level rise and landscape change influence mangrowe encroachment onto marsh in the Ten Thousand Islands region of Florida, USA. J. Coast. Conserv. 15 (4), 629-638. https://doi.org/10.1007/s11852-011-0153-4.
- [59] Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., Dech, S., 2011. Remote sensing of mangrove ecosystems: A review. Remote Sens. 3 (5), 878-928. https://doi.org/10.3390/rs3050878.
- [60] Lee, T. M., Yeh, H. C., 2009. Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan. Ecol. Eng. 35 (4), 487-496. https://doi.org/10.1016/j.ecoleng.2008.01.007.
- [61] Lillesand, T. M., Keifer, R. W., Chipman, J. W., 2007. Remote Sensing and Image Interpretation. John Wiley & Sons, Inc., New York, 724 pp.
- [62] Lindén, O., Pålsson, J., 2013. Oil contamination in Ogoniland, Niger delta. Ambio 42 (6), 685-701. https://doi.org/10.1007/s13280-013-0412-8.
- [63] López-Medellín, X., Ezcurra, E., González-Abraham, C., Hak, J., Santiago, L. S., Sickman, J. O., 2011. Oceanographic anomalies and sea-level rise drive mangroves inland in the Pacific coast of Mexico. J. Veg. Sci. 22 (1), 143-151. https://doi.org/10.1111/j.1654-1103.2010.01232.x.
- [64] Lovelock, C. E., Cahoon, D. R., Friess, D. A., Guntenspergen, G. R., Krauss, K. W., Reef, R., Rogers, K., Saunders, M. L., Sidik, F., Swales, A., Saintilan, N., 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526 (7574), 559-563. https://doi.org/10.1038/nature15538.
- [65] Lovelock, C. E., Feller, I. C., Reef, R., Hickey, S., Ball, M. C., 2017. Mangrove dieback during fluctuating sea levels. Sci. Rep. 7 (1), 1-8. https://doi.org/10.1038/s41598-017-01927-6.
- [66] Mafi-Gholami, D., Zenner, E. K., Jaafari, A., Bui, D. T., 2020. Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuar. Coast. Shelf Sci. 237, art. no. 106644. https://doi.org/10.1016/j.ecss.2020.106644.
- [67] Maleki-Zade, A., 2014. Monitoring thermal land use and cover change due to Pars Special Economic Energy Zone by use of satellite imageries M. Sc. thesis. Natural Resource College, Isfahan Industrial Univ.
- [68] McKee, K. L., Mendelssohn, I. A., Materne, M., 2004. Acute salt marsh dieback in the Mississippi River deltaic plain: a drought-induced phenomenon? Glob. Ecol. Biogeogr. 13 (1), 65-73. https://doi.org/10.1111/j.1466-882X.2004.00075.x.
- [69] Meneses-Tovar, C. L., 2011. NDVI as indicator of degradation. Unasylva 238 (62), 39-46.
- [70] Moaddab, A. R., Khabazi, M., Roosta, H., 2017. Determining the rate of salinity of Persian Gulf waters with the aid of satellite images and least squares method. Open J. Mar. Sci.. 7 (01), art. no. 155. https://doi.org/10.4236/ojms.2017.71012.
- [71] Mostafavi, H., Kiabi, B., Mahini, E., Mehrabian, A., Naghinejhad, E., 2004. Ecological Evaluation of Mond Protected Area. Corporate scientific project between Department of the Environment of Bushehr Province and Shahid Beheshti University, Bushehr, 133 pp.
- [72] Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., Sebesvari, Z., 2019. Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. In: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge Univ. Press, Cambridge, UK, 321-445.
- [73] Osland, M. J., Enwright, N., Day, R. H., Doyle, T. W., 2013. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Glob. Change Biol. 19 (5), 1482-1494. https://doi.org/10.1111/gcb.12126.
- [74] Osland, M. J., Enwright, N. M., Day, R. H., Gabler, C. A., Stagg, C. L., Grace, J. B., 2016. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22 (1), 1-11. https://doi.org/10.1111/gcb.13084.
- [75] Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., Dasgupta, P., Dubash, N. K., 2014. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, 151 pp.
- [76] Padash, A., Jozi, S. A., Nabavi, S. M. B., Dehzad, B., 2016. Stepwise strategic environmental management in marine protected area. GJESM 2 (1), 49-60. https://doi.org/10.7508/gjesm.2016.01.006.
- [77] Perry, C. L., Mendelssohn, I. A., 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt marsh. Wetlands 29 (1), 396-406. https://doi.org/10.1672/08-100.1.
- [78] Pettitt, A. N., 1979. A non-parametric approach to the change-point problem. J. Roy. Stat. Soc. C - App. 28 (2), 126-135. https://doi.org/10.2307/2346729.
- [79] Proffitt, C. E., Devlin, D. J., Lindsey, M., 1995. Effects of oil on mangrove seedlings grown under different environmental conditions. Mar. Pollut. Bull. 30 (12), 788-793. https://doi.org/10.1016/0025-326X(95)00070-4.
- [80] Rahimzadeh, F., Asgari, A., an Fattahi, E., 2009. Variability of extreme temperature and precipitation in Iran during recent decades. Int. J. Climatol. 29 (3), 329-343. https://doi.org/10.1002/joc.1739.
- [81] Ramcharan, E. K., 2004. Mid-to-late Holocene sea level influence on coastal wetland development in Trinidad. Quat. Int. 120 (1), 145-151. https://doi.org/10.1016/j.quaint.2004.01.013.
- [82] Ranasinghe, R., Duong, T. M., Uhlenbrook, S., Roelvink, D., Stive, M., 2013. Climate-change impact assessment for inlet-interrupted coastlines. Nat. Clim. Change 3 (1), 83-87. https://doi.org/10.1038/nclimate1664.
- [83] Saintilan, N., Khan, N. S., Ashe, E., Kelleway, J. J., Rogers, K., Woodroffe, C. D., Horton, B. P., 2020. Thresholds of mangrowe survival under rapid sea level rise. Science. Science 368 (6495), 1118-1121. https://doi.org/10.1126/science.aba2656.
- [84] Salehipour-Milani, A., Jafari-Beglu, M., 2012. Satellite-based assessment of the area and changes in the mangrove ecosystem of the Qeshm island, Iran. J. Environ. Res. Dev. 7, 1052-1060.
- [85] Sam, K., Coulon, F., Prpich, G., 2017. Management of petroleum hydrocarbon contaminated sites in Nigeria: Current challenges and future direction. Land Use Policy 64, 133-144. https://doi.org/10.1016/j.landusepol.2017.01.051.
- [86] Samadi, S., Wilson, C. A., Moradkhani, H., 2013. Uncertainty analysis of statistical downscaling models using Hadley Centre Coupled Model. Theor. Appl. Climatol. 114 (3-4), 673-690. https://doi.org/10.1007/s00704-013-0844-x.
- [87] Samanta, K., Hazra, S., 2017. Mangrove Forest Cover Changes in Indian Sundarban (1986-2012) Using Remote Sensing and GIS. In: Hazra, S., Mukhopadhyay, A., Ghosh, A. R., Mitra, D., Dadhwal, V. K. (Eds.), Environment and Earth Observation: Case Studies in India. Springer Int. Publ., Cham, 97-108. https://doi.org/10.1007/978-3-319-46010-9.
- [88] Sanders, C. J., Maher, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., Santos, I. R., 2016. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121 (10), 2600-2609. https://doi.org/10.1002/2016JG003510.
- [89] Sari, S. P., Rosalina, D., 2016. Mapping and monitoring of mangrowe density changes on tin mining area. Procedia Environ. Sci. 33, 436-442. https://doi.org/10.1016/j.proenv.2016.03.094.
- [90] Sharitz, R. R., Pennings, S. C., 2006. Development of wetland plant communities in Ecology of freshwater and estuarine wetlands. In: Batzer, D. P. (Ed.), Ecology of Freshwater and Estuarine Wetlands. Univ. California Press, Berkley, 133-150. https://doi.org/10.1525/california/9780520247772.003.0006.
- [91] Schile, L. M., Kauffman, J. B., Crooks, S., Fourqurean, J. W., Glavan, J., Megonigal, J. P., 2016. Limits on Carbon Sequestration in Arid Blue Carbon Ecosystems. Ecol. Appl. 27 (3), 859-874. https://doi.org/10.1002/eap.1489.
- [92] Schoonbeek, J. B., 1976. Land subsidence as a result of natural gas extraction in the province of Groningen. SPE European Spring Meeting, 8-9 April. Soc. Petrol. Eng. Publ., Amsterdam, The Netherlands. https://doi.org/10.2118/5751-MS.
- [93] Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis, A. T., Hinkel, J., 2018. Future response of global coastal wetlands to sea-level rise. Nature 561 (7722), 231-234. https://doi.org/10.1038/s41586-018-0476-5.
- [94] Shojaei-Gori, J., Jafari, A., Soltani, A., Ghasemi, A., Sirghani, M., 2013. The investigation of Nyband and Basatin Mangrove degredatiom in Boshehr province. Environ. Res. 17 (9), 187-196 (in Persian).
- [95] Silva, R. M., Santos, C. A. G., Macêdo, M. L. A., Silva, L. P., Freire, P. K. M. M., 2013. Space-time variability of rainfall and hydrological trends in the Alto São Francisco River basin. IAHS-AISH Publ., 359 pp.
- [96] Sippo, J. Z., Lovelock, C. E., Santos, I. R., Sanders, C. J., Maher, D. T., 2018. Mangrove mortality in a changing climate: An overview. Estuar. Coast. Shelf Sci. 215, 241-249. https://doi.org/10.1016/j.ecss.2018.10.011.
- [97] Smoak, J. M., Breithaupt, J. L., Smith, T. J., Sanders, C. J., 2013. Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena 104, 58-66.
- [98] Snedaker, S. C., Jimenez, J. A., Brown, M. S., 1981. Anomalous aerial roots in Avicennia germinans L., in Florida and Costa Rica. Bull. Mar. Sci. 31, 467-470.
- [99] Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., Sabziparvar, A. A., SaadatAbadi, A. R., Ranjbar, F., Rousta, I., Zawar-Reza, P., 2016. Assessment of climate variations in temperature and precipitation extreme events over Iran. Theor. Appl. Climatol. 126 (3-4), 775-795. https://doi.org/10.1007/s00704-015-1609-5.
- [100] Spencer, T., Schuerch, M., Nicholls, R. J., Hinkel, J., Lincke, D., Vafeidis, A. T., Reef, R., McFadden, L., Brown, S., 2016. Global coastal wetland changes under sea-level rise and related stresses: The DIVA Wetland Change Model. Glob. Planet. Change 139, 15-30. https://doi.org/10.1016/j.gloplacha.2015.12.018.
- [101] Swift, S. A., Uchupi, E., Ross, D. A., 1988. Late Cenozoic geology of the central Persian Gulf from industry well data and seismic profiles. Tech. Mem. WHOI 01-98, 76. https://doi.org/10.1575/1912/1926.
- [102] Tabari, H., Marofi, S., 2011. Changes of pan evaporation in the west of Iran. Water Resour. Manag. 25 (1), 97-111. https://doi.org/10.1007/s11269-010-9689-6.
- [103] Walters, B. B., Rönnbäck, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., Primavera, J. H., Barbier, E., Dahdouh-Guebas, F., 2008. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 89 (2), 220-236. https://doi.org/10.1038/416389a.
- [104] Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. Nature 416 (6879), 389-395. https://doi.org/10.1038/416389a.
- [105] Ward, R., Friess, D., Day, R., Mackenzie, R., 2016. Impacts of climate change on global mangrove ecosystems: a regional comparison. EHS 2 (4), 1-25. https://doi.org/10.1002/ehs2.1211.
- [106] Wibowo, A., Supriatna, S., 2010. Coastal Environmental Vulnerability on Coastal Cities in Indonesia. Jurnal Ilmu dan Teknologi Kelautan Tropis 3, 20. https://doi.org/10.29244/jitkt.v3i2.7818.
- [107] Zare-marivan, H., 2010. Distribution of heavy metals associated with petroleum in the northern Persian Gulf: Bushehr and Nayband Bay area. J. Persian Gulf 1 (1), 1-6 (in Persian).
- [108] Zare-Zadeh Mehrizi, T., Khoshbakht, K., Mahdavi Damghani, A., Kambouzia, J., 2011. Studying effects of reduction in tidal flooding on the structure of mangrove forests; a case study from Nayband Coastal National Park. Environ. Sci. 8 (4), 43-58 (in Persian).
- [109] Zhu, Z., Woodcock, C. E., 2014. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 144, 152-171. https://doi.org/10.1016/j.rse.2014.01.011.
- [110] Zomer, R. J., Trabucco, A., Ustin, S. L., 2009. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. J. Environ. Manag. 90 (7), 2170-2177. https://doi.org/10.1016/j.jenvman.2007.06.028.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-803c6c3a-0527-4ba5-9d1e-2a3abaf2b698