Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Chromium is the main constituent of the tanning salts used by tanneries for processing skins into leather, and considered as a pollutant in the effluents that this industry discharge. The present study aimed to evaluate the removal of chromium and other pollutants in effluents from the tanning industry applying the natural zeolite Neonite. Neonite is a commercially available zeolite, which was acquired from NEONITE S.A. Neonite was characterized through FTIR and XRD, identifying clinoptilolite as its main component. Treatment was applied to the samples of real effluents from the tanning stage or chromium bath (CB) and a composite effluent (CE), an experimental design was carried out for each effluent. The designs correspond to 32 factorial designs, the variables tested were the Neonite dosage (NE) measured in g/L, stirring time (StT) expressed in minutes and the pH of the sample, and the response variable was the residual chromium content (RCC). Statistical analysis was performed through R-software version 4.2.3 and included Box-Cox transformation and ANOVA to determine the main effects and the behavior of the response variable in relation to the applied model and its optimization by response surface. In CB, a removal above 95% was obtained for RCC, with optimization values at 32 g/L of NE and pH 7. In the CE, a removal of more than 98% was obtained for RCC and values higher than 60% for BOD, COD, TSS and Fats, being the optimal conditions 4.73 g/L of NE and 12.17 minutes of StT. These results demonstrate that the application of Neonite for the removal of chromium and other pollutants from tanning industry effluents has a great potential.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
41--53
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Productive Innovation and Technological Transfer Center of Leather, Footwear and related industries (CITEccal Lima), Technological Institute of Production (ITP), Caquetá Ave. 1300, Rímac, 15094, Lima, Peru
autor
- Productive Innovation and Technological Transfer Center of Leather, Footwear and related industries (CITEccal Lima), Technological Institute of Production (ITP), Caquetá Ave. 1300, Rímac, 15094, Lima, Peru
autor
- Faculty of Environmental Engineering, National University of Engineering, Túpac Amaru Ave. 210, Rímac 15333, Lima, Peru
autor
- Faculty of Sciences, National University of Engineering, Túpac Amaru Ave. 210, Rímac 15333, Lima, Peru
autor
- Faculty of Sciences, National University of Engineering, Túpac Amaru Ave. 210, Rímac 15333, Lima, Peru
Bibliografia
- 1. Aguilar-Ascón, E., Marrufo-Saldaña, L., Neyra-Ascón, W. 2019. Reduction of Total Chromium Levels from Raw Tannery Wastewater via Electrocoagulation using Response Surface Methodology. Journal of Ecological Engineering, 20(11), 217–224. https://doi.org/10.12911/22998993/113191
- 2. Aljerf, L. 2018. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study. Journal of Environmental Management, 225(April), 120–132. https://doi.org/10.1016/j.jenvman.2018.07.048
- 3. Álvarez, A.M., Guerrón, D.B., Montero Calderón, C. 2021. Natural zeolite as a chromium VI removal agent in tannery effluents. Heliyon, 7(9). https://doi.org/10.1016/j.heliyon.2021.e07974
- 4. Ayele, L., Pérez, E., Mayoral, Á., Chebude, Y., Díaz, I. 2018. Synthesis of zeolite A using raw kaolin from Ethiopia and its application in removal of Cr(III) from tannery wastewater. Journal of Chemical Technology & Biotechnology, 93(1), 146–154. https://doi.org/10.1002/jctb.5334
- 5. Boldrini, G., Sgarlata, C., Lancellotti, I., Barbieri, L., Giorgetti, M., Ciabocco, M., Zamponi, S., Berrettoni, M., and Leonelli, C. 2021. Efficient chemical stabilization of tannery wastewater pollutants in a single step process: Geopolymerization. Sustainable Environment Research, 31(1). https://doi.org/10.1186/s42834-021-00106-7
- 6. Bordiga, S., Lamberti, C., Bonino, F., Travert, A., Thibault-Starzyk, F. 2015. Probing zeolites by vibrational spectroscopies. Chemical Society Reviews, 44(20), 7262–7341. https://doi.org/10.1039/C5CS00396B
- 7. Chowdhury, M., Mostafa, M.G., Biswas, T.K., Saha, A.K. 2013. Treatment of leather industrial effluents by filtration and coagulation processes. Water Resources and Industry, 3, 11–22. https://doi.org/10.1016/j.wri.2013.05.002
- 8. Córdova-Rodríguez, V., Rodríguez-Iznaga, I., Acosta-Chávez, R.M., Chávez-Rivas, F., Petranovskii, V., Pestryakov, A. 2016. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters. Journal of Environmental Science and Health, Part A, 51(5), 425–433. https://doi.org/10.1080/10934529.2015.1120536
- 9. Cosavalente, I. 2019. “Perú: Situación actual del sector cuero y calzado.” IV Congreso Nacional de Cuero y Calzado – Lima 2019, 1–45. https://citeccal.itp.gob.pe/wp-content/uploads/2019/12/IV-CONGRESO-NACIONAL-DE-CUERO-Y-CALZADO-SITUACION-ACTUAL-DEL-SEC-TOR-CUERO-Y-CALZADO-BCRP-Trujillo.pdf
- 10. Díaz, I. 2017. Environmental uses of zeolites in Ethiopia. Catalysis Today, 285, 29–38. https://doi.org/10.1016/j.cattod.2017.01.045
- 11. Dimos, V., Haralambous, K.J., Malamis, S. 2012. A Review on the Recent Studies for Chromium Species Adsorption on Raw and Modified Natural Minerals. Critical Reviews in Environmental Science and Technology, 42(19), 1977–2016. https://doi.org/10.1080/10643389.2011.574102
- 12. El-Kammar, A., Melegy, A., Miro, G. 2015. Mineralogical and geochemical characterization of natural zeolites from southwest Syria. Arabian Journal of Geosciences, 8(7), 4589–4601. https://doi.org/10.1007/s12517-014-1519-3
- 13. Gutiérrez, H., De la Vara, R. 2012. Análisis y Diseño de Experimentos (3rd Ed). McGraw-Hill.
- 14. Kim, J., Seo, S., Kim, Y., Kim, D.H. 2018. Review of carcinogenicity of hexavalent chrome and proposal of revising approval standards for an occupational cancers in Korea. Annals of Occupational and Environmental Medicine, 30(1), 2–6. https://doi.org/10.1186/s40557-018-0215-2
- 15. Mann, B.R., McMillan. 2017. The chemistry of the leather industry.
- 16. Mansouri, N., Rikhtegar, N., Ahmad Panahi, H., Atabi, F., Shahraki, B.K. 2013. Porosity, characterization and structural properties of natural zeolite - Clinoptilolite - As a sorbent. Environment Protection Engineering, 39(1), 139–152. https://doi.org/10.5277/EPE130111
- 17. Margeta, K., Zabukovec, N., Siljeg, M., Farkas, A. 2013. Natural Zeolites in Water Treatment – How Effective is Their Use. Water Treatment. https://doi.org/10.5772/50738
- 18. Marinho, B.A., Cristóvão, R.O., Boaventura, R.A.R., Vilar, V.J.P. 2019. As(III) and Cr(VI) oxyanion removal from water by advanced oxidation/reduction processes—a review. Environmental Science and Pollution Research, 26(3), 2203–2227. https://doi.org/10.1007/s11356-018-3595-5
- 19. Decreto Supremo que aprueba el Reglamento de Valores Máximos Admisibles (VMA) para las descargas de aguas residuales no domésticas en el sistema de alcantarillado sanitario, Pub. L. No. D.S. No 010-2019-VIVIENDA, 45(2019).
- 20. Misaelides, P. 2011. Application of natural zeolites in environmental remediation: A short review. Microporous and Mesoporous Materials, 144(1–3), 15–18. https://doi.org/10.1016/j.micromeso.2011.03.024
- 21. Mohamed, M.S.M., El-Arabi, N.I., El-Hussein, A., El-Maaty, S.A., Abdelhadi, A.A. 2020. Reduction of chromium-VI by chromium-resistant Escherichia coli FACU: a prospective bacterium for bioremediation. Folia Microbiologica, 65(4), 687–696. https://doi.org/10.1007/s12223-020-00771-y
- 22. Morante-Carballo, F., Montalván-Burbano, N., Carrión-Mero, P., Espinoza-Santos, N. 2021. Cation Exchange of Natural Zeolites: Worldwide Research. Sustainability, 13(14), 7751. https://doi.org/10.3390/su13147751
- 23. Mou, H., Liu, W., Zhao, L., Chen, W., Ao, T. 2021. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil. Frontiers of Environmental Science and Engineering, 15(4). https://doi.org/10.1007/s11783-020-1353-7
- 24. Pavesi, T., Moreira, J.C. 2020. Mechanisms and individuality in chromium toxicity in humans. Journal of Applied Toxicology, 40(9), 1183–1197. https://doi.org/10.1002/jat.3965
- 25. Rahme, L., Hartman, D. 2012. Fish Leather: Tanning and Sewing with Traditional Methods. Lottas Garfveri.
- 26. Sallam, A.E.A., Al-Zahrani, M.S., Al-Wabel, M.I., Al-Farraj, A.S., Usman, A.R.A. 2017. Removal of Cr(VI) and toxic ions from aqueous solutions and tannerywastewater using polymer-clay composites. Sustainability (Switzerland), 9(11). https://doi.org/10.3390/su9111993
- 27. Silva, B., Neves, I.C., Tavares, T. 2016. A sustained approach to environmental catalysis: Reutilization of chromium from wastewater. Critical Reviews in Environmental Science and Technology, 46(19–20), 1622–1657. https://doi.org/10.1080/10643389.2016.1255505
- 28. Terayama, F. 2013. Purification (decontamination) method of drainage (waste water)/soil containing cesium and heavy metals by neonite (Patent No. JP2013003130A).
- 29. Xu, T., Nan, F., Jiang, X., Tang, Y., Zeng, Y., Zhang, W., Shi, B. 2020. Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicology and Environmental Safety, 195(24), 110459. https://doi.org/10.1016/j.ecoenv.2020.110459
- 30. Zhang, C., Lin, J., Jia, X., Peng, B. 2016. A salt-free and chromium discharge minimizing tanning technology: the novel cleaner integrated chrome tanning process. Journal of Cleaner Production, 112, 1055–1063. https://doi.org/10.1016/j.jclepro.2015.07.155
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-803a790a-5b00-4464-80a8-00fd7f47b69e