PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SEC analysis of the molar mass of lignin isolated from poplar (Populus deltoides x maximowiczii) and Scots pine (Pinus sylvestris L.) wood

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza SEC masy cząsteczkowej ligniny wyodrębnionej z drewna topoli (Populus deltoides x maximowiczii) i sosny zwyczajnej (Pinus sylvestris L.)
Języki publikacji
EN
Abstrakty
EN
SEC analysis of the molar mass of lignin isolated from poplar (Populus deltoides x maximowiczii) and Scots pine (Pinus sylvestris L.) wood. The aim of the study was to analyse the molar mass of lignin, which can be a waste product in bioethanol production technology. A studies of isolated lignin from two species: Populus deltoides x maximowiczii (hardwood) and Pinus sylvestris L. (softwood) were conducted to determine its molar mass using the SEC technique. Two acidic methods of lignin isolation were used during the studies. The use of 72% sulphuric acid yielded higher values of Mn, Mw and PDI and the lignin was better dissolved in 0.5% LiCl/DMAc system, which determined the continued use of this method in further studies. The Klason lignin samples for both species were subjected to milling at three time configurations: 5, 15 and 30 min, which resulted in an increase in the aforementioned values. The tests carried out and the analysis of the results indicated that milling times longer than 5 min caused degradation and repolymerisation of the lignin, as confirmed by the molar mass distributions. Some of the wood samples were pretreated with steam explosion and next isolated Klason lignin were milled. SEC analysis showed a decrease in Mn values with increasing milling time, while an increase in Mw and PDI for steam exploded poplar lignin. For analogical obtained steam exploded pine lignin, the values increased directly proportional. For the milling carried out, 5 min was recommended, so that lignin solubility increased and molar mass was determined more reliable.
PL
Celem badań była analiza masy cząsteczkowej ligniny, która może stanowić produkt odpadowy w technologii produkcji bioetanolu. Przeprowadzono badania wyodrębnionej ligniny z dwóch gatunków: Populus deltoides x maximowiczii (drewno liściaste) i Pinus sylvestris L. (drewno iglaste) w celu określenia jej masy cząsteczkowej techniką SEC. W badaniach zastosowano dwie kwasowe metody wyodrębniania ligniny. Zastosowanie 72% kwasu siarkowego pozwoliło uzyskać wyższe wartości Mn, Mw i PDI, a lignina lepiej rozpuszczała się w układzie 0,5% LiCl/DMAc, co determinowało kontynuację stosowania tej metody w dalszych badaniach. Próbki ligniny Klasona obu gatunków poddano mieleniu w trzech konfiguracjach czasowych: 5, 15 i 30 min, co spowodowało wzrost ww. wartości. Przeprowadzone badania i analiza wyników wykazały, że czasy mielenia dłuższe niż 5 min powodują degradację i repolimeryzację ligniny, co potwierdzają rozkłady mas cząsteczkowych. Część próbek drewna poddano wstępnej obróbce wybuchem pary, a następnie wyodrębnioną ligninę Klasona zmielono. Analiza SEC wykazała spadek wartości Mn wraz ze wzrostem czasu mielenia oraz wzrost Mw i PDI dla ligniny topolowej poddanej obróbce wstępnej wybuchem pary. Dla analogicznie otrzymanej ligniny sosnowej poddanej obróbce wstępnej wybuchem pary wartości wzrosły wprost proporcjonalnie. Dla przeprowadzonego mielenia zalecano czas 5 min i w ten sposób zwiększono rozpuszczalność ligniny, co umożliwiło w sposób bardziej wiarygodny określić jej masę cząsteczkową.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Science – SGGW
  • Department of Wood Science and Wood Protection, Institute of Wood Sciences and Furniture, Warsaw University of Life Science – SGGW
Bibliografia
  • 1. ABAS N., KALAIR A., KHAN N., 2015: Review of Fossil Fuels and Future Energy Technologies. Futures 69, 31-49.
  • 2. ANTCZAK A., RADOMSKI A., ZAWADZKI J., 2006: Benzene substitution in wood analysis. Annals of WULS – SGGW, Forestry and Wood Technology 58, 15-19.
  • 3. ANTCZAK A., SZADKOWSKI J., SZADKOWSKA D., ZAWADZKI J., 2022: Assessment of the effectiveness of liquid hot water and steam explosion pretreatments of fast-growing poplar (Populus trichocarpa) wood. Wood Science and Technology 56, 87-109.
  • 4. BAUMBERGER S., ABAECHERLI A., FASCHING M., GELLERSTEDT G., GOSSELINK R., HORTLING B., LI J., SAAKE B., DE JONG E., 2007: Molar mass determination of lignins by size-exclusion chromatography: Towards standardisation of the method. Holzforschung 61, 459-468.
  • 5. BAUMBERGER S., DOLE P., LAPIERRE C., 2002: Using Transgenic Poplars to Elucidate the Relationship between the Structure and the Thermal Properties of Lignins. Journal of Agricultural and Food Chemistry 50, 2450-2453.
  • 6. BRODA M., YELLE D.J., SERWAŃSKA K., 2022: Bioethanol Production from Lignocellulosic Biomass-Challenges and Solutions. Molecules 27, 8717.
  • 7. CADOCHE L., LÓPEZ G.D., 1989: Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biological Wastes 30, 153-157.
  • 8. DENCE C.W., 1992: The Determination of Lignin. In: Lin S.Y., Dence C.W. [eds.]: Methods in Lignin Chemistry. Springer, Berlin.
  • 9. DHAKA R.K., SINHA S.K., GUNAGA R.P., THAKUR N.S., 2019: Modification in protocol for estimation of Klason- lignin content by gravimetric method. International Journal of Chemical Studies 7(5), 2661-2664.
  • 10. DOHERTY W.O.S., MOUSAVIOUN P., FELLOWS C.M., 2011: Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products 33(2), 259-276.
  • 11. EL MANSOURI N.E., SALVADO J., 2006: Structural Characterization of Technical Lignins for the Production of Adhesives: Application to Lignosulfonate, Kraft, Soda-Anthraquinone, Organosolv and Ethanol Process Lignins. Industrial Crops and Products, 24, 8-16.
  • 12. GROUS W., CONVERSE R., GRETHLEIN H.E., 1986: Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enzyme and Microbial Technology 8, 274-280.
  • 13. GUERRA A., FILPPONEN I., LUCIA L.A., ARGYROPOULOS D.S., 2006: Comparative evaluation of three lignin isolation protocols for various wood species. Journal of Agricultural and Food Chemistry 54, 9696-9705.
  • 14. HIDENO A., INOUE H., TSUKAHARA K., FUJIMOTO S., MINOWA T., INOUE S., ENDO T., SAWAYAMA, S. 2009: Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresource Technology 100, 2706-2711.
  • 15. KLASON P., 1893: Framstallning af rent lignin ur granved och denna sednares kemiska sammansattning. Teknisk Tidskrift, Afdelningen for Kemi och Metallurgi 23(2), 55-56.
  • 16. KRUTUL D., 2002: Exercises in wood chemistry and selected issues in organic chemistry. WULS-SGGW, Warsaw.
  • 17. KUMAR P., BARRETT D.M., DELWICHE M.J., STROEVE P., 2009: Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research 48, 3713-3729.
  • 18. LAI Y-Z., SARKANEN K.V., 1971: Isolation and structural studies. Lignins. Occurrence, formation, structure and reactions. Wiley-Interscience, New York.
  • 19. LAN W., LUTERBACHER J.S., 2019: Preventing Lignin Condensation to Facilitate Aromatic Monomer Production. Chimia 73, 591-598.
  • 20. LASER M., SCHULMAN D., ALLEN S.G., LICHWA J., ANTAL M. J., LYND, L. R., 2002: A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology 81, 33-44.
  • 21. LI Y., SHUAI L., KIM H., MOTAGAMWALA A.H., MOBLEY J.K., YUE F., TOBIMATSU Y., HAVKIN-FRENKEL D., CHEN F., DIXON R.A., LUTERBACHER J.S., DUMESIC J.A., RALPH J., 2018: An “ideal lignin” facilitates full biomass utilization. Science Advances 4 (9), eaau2968.
  • 22. MICHALSKA M., 2020: Study of the effect of selected pre-treatment methods on chemical composition and enzymatic hydrolysis efficiency of Scots pine (Pinus sylvestris L.) and Maximowicz poplar (Populus deltoides x maximowiczii) wood. Master thesis, SGGW, Warsaw.
  • 23. MOON S-J., EOM I-Y., KIM J-Y., KIM T-S., LEE S.M., CHOI I-G., CHOI J.W., 2011: Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars. Bioresource Technology 102, 5912-5916.
  • 24. MORI T., TSUBOI Y., ISHIDA N., NISHIKUBO N., DEMURA T., KIKUCHI J. 2015: Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose. Scientific Reports 5, 11848.
  • 25. RAMOS L.P., 2003: The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova 26, 863-871.
  • 26. SAEMAN J.F., MOORE W.E., MITCHELL R.L., MILLET M.A., 1954: Techniques for the determination of pulp constituents by quantitative paper chromatography. TAPPI 37, 336-343.
  • 27. SANNIGRAHI P., RAGAUSKAS A.J., MILLER S.J., 2010: Lignin Structural Modifications Resulting from Ethanol Organosolv Treatment of Loblolly Pine. Energy and Fuels 24, 683-689.
  • 28. SHUAI L., AMIRI M.T., QUESTELL-SANTIAGO Y.M., HÉROGUEL F., LI Y., KIM H., MEILAN R., CHAPPLE C., RALPH J., LUTERBACHER J.S., 2016: Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science 354, 329-333.
  • 29. SLUITER A., HAMES B., RUIZ R., SCARLATA C., SLUITER J., TEMPLETON D., 2008: Determination of ash in biomass (NREL/TP-510–42622). National Renewable Energy Laboratory, Golden, CO.
  • 30.SUN F., SUN Q., 2015: Current Trends in Lignocellulosic Analysis with Chromatography. Annals Chromatography and Separation Techniques 1, 1008.
  • 31.TAPPI T222 om-02, 2006: Acid-insoluble lignin in wood and pulp. TAPPI Press, Atlanta.
  • 32.TAPPI UM 250, 1985: Acid-soluble lignin in wood and pulp. TAPPI Press, Atlanta.
  • 33.TAYYAB M., NOMAN A., ISLAM W., WAHEED S., ARAFAT Y., ALI F., ZAYNAB M., LIN., S., ZHANG H., KHAN D., 2017: Bioethanol production from lignocellulosic biomass by environment-friendly pretreatment methods: A review. Applied Ecology and Environmental 16, 225-249.
  • 34.TOLBERT A., AKINOSHO H., KHUNSUPAT R., NASKAR A.K., RAGAUSKAS A.J., 2014: Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels, Bioproducts and Biorefining 8(6), 836-856.
  • 35. WANG H., LIU Z., HUI L., MA L., ZHENG X., LI J., ZHANG Y., 2020: Understanding the structural changes of lignin in poplar following steam explosion pretreatment. Holzforschung 74, 275-285.
  • 36. WISE L.E., MURPHY M., D′ADDIECO A.A., 1946: Chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Paper Trade Journal 122, 35-43.
  • 37. YUAN Z., CHENG S., LEITCH M., XU C., 2010: HYdrolytic Degradation of Alkaline LIgnin in Hot-Compressed Water and Ethanol. Bioresource Technology 101, 9308-9313.
  • 38. ZHU J.Y., PAN, X., ZALESNY R.S., 2010: Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Applied Microbiology and Biotechnology 87, 847-857.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-803736b9-0126-4cc7-b011-ab67280d82e9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.