PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of viscosity on the shape of an air Taylor bubble in a stagnant liquid under turbulent condition in falling film

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work aims to find the influence of the liquid viscosity on the shape of an air Taylor bubble, rising up in a pipe column which contains the liquid under conditions that the liquid is stagnant and the Froude number is approximately equal to 0.35. Five liquid viscosities (from 0.001 to 0.01 Pa · s) were selected for being computationally investigated. An appropriate shape of a Taylor bubble, corresponding to each selected viscosity, was obtained by considering a pressure distribution of the air inside the bubble. Simulation results showed that the Taylor bubble shape would be thicker if the liquid viscosity was decreased. This could be explained by using the theory of the log-law velocity profile.
Rocznik
Strony
67--77
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
  • Advanced Computational Fluid Dynamics Research Unit Department of Mechanical Engineering Faculty of Engineering, Chulalongkorn University Bangkok, 10330 THAILAND
Bibliografia
  • [1] Nogueira S., Riethmuler M.L., Campos J.B.L.M. and Pinto A.M.F.R. (2006): Flow in the nose region and annual film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids. – Chemical Engineering Science, vol.61, pp.845-857.
  • [2] Dumitrescu D.T. (1943): Strömung an Einer Luftblase im Senkrechten Rohr. – Zeitschrift fur An-gewandte Mathematik und Mechanik, vol.23, pp.139-149.
  • [3] Bugg J.D., Mack K. and Rezkallah K.S. (1998): A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes. – International Journal of Multiphase Flow, vol.24, No.2, pp.271-281.
  • [4] Mao Z-S. and Dukler A.E. (1990): The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid. – Journal of Computational Physics, vol.91, No.1, pp.132-160.
  • [5] Mao Z-S. and Dukler A.E. (1991): The motion of Taylor bubbles in vertical tubes-II. Experimental data and simulations for laminar and turbulent flow. – Chemical Engineering Science, vol.46, No.8, pp.2055-2064.
  • [6] Smith S., Taha T. and Cui Z. (2002): Enhancing hollow fibre ultrafiltration using slug-flow – a hydrodynamic study. – Desalination, vol.146, pp.69-74.
  • [7] Taha T. and Cui Z.F. (2004): Hydrodynamics of slug flow inside capillaries. – Chemical Engineering Science, vol.59, pp.1181-1190.
  • [8] Thulasidas T.C., Abraham M.A. and Cerro R.L. (1997): Flow patterns in liquid slugs during bubble-train flow inside capillaries. – Chemical Engineering Science, vol.52, pp.2947-2962.
  • [9] Van Baten J.M. and Krishna R. (2004): CFD simulation of mass transfer from Taylor bubbles rising in circular capillaries. – Chemical Engineering Science, vol.59, pp.2535-2545.
  • [10] Hayashi K., Kurimoto R. and Tomiyama A. (2011): Terminal velocity of a Taylor drop in a vertical pipe. – International Journal of Multiphase Flow, vol.37, pp.241-251.
  • [11] White E.T. and Beardmore R.H. (1962): The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes. – Chemical Engineering Science, vol.17, No. 5, pp.351-361.
  • [12] Ahmad W.R., DeJesus J.M. and Kawaji M. (1998): Falling film hydrodynamics in slug flow. – Chemical Engineering Science, vol.53, pp.123-130.
  • [13] Hout R.V., Bernea D. and Shemer L. (2001): Evolution of statistical parameters of gas-liquid slug flow along vertical pipes. – International Journal of Multiphase Flow, vol.27, pp.1579-1602.
  • [14] Pinto A.M.F.R., Coelho Pinheiro M.N. and Campos J.B.L. (2001): On the interaction of Taylor bubbles rising In two-phase co-current slug flow in vertical columns: turbulent wakes. – Experiments in Fluids, vol.31, pp.643-652.
  • [15] Kytömaa H.K. and Brennen C.E. (1991): Small amplitude kinematic wave propagation in two-component media. – International Journal of Multiphase Flow, vol.17, No.1, pp.13-26.
  • [16] Cheng H., Hills J.H. and Azzorpardi B.J. (1998): A study of the bubble-to-slug transition in vertical gas-liquid flow in columns of different diameter. – International Journal of Multiphase Flow, vol.24, No.3, pp.431-452.
  • [17] Sun B., Wang R., Zhao X. and Yan D. (2002): The mechanism for the formation of slug flow in vertical gas-liquid two-phase flow. – Solid-State Electronics, vol.46, No.12, pp.2323-2329.
  • [18] Mayor T.S., Pinto A.M.F.R. and Campos J.B.L.M. (2007): Hydrodynamics of gas-liquid slug flow along vertical pipes in the laminar regimes-experimental and simulation study. – Industrial and Engineering Chemistry Research, vol.46, pp.3794-3809.
  • [19] Ferziger J.H. and Peric M. (2002): Computational Methods for Fluid Dynamics. – Germany: Springer.
  • [20] Hout R.V., Bernea D. and Shemer L. (2003): Evolution of hydrodynamic and statistical parameters of gas-liquid slug flow along inclined pipes. – Chemical Engineering Science, vol.58, No.1, pp.115-133.
  • [21] Shemer L. (2003): Hydrodynamic and statistical parameters of slug flow. – International Journal of Heat and Fluid Flow, vol.24, pp.334-344.
  • [22] Lertnuwat B. (2015): Model for predicting the head shape of a Taylor bubble rising through stagnant liquids in a vertical tube. – Thammasat International Journal of Science and Technology, vol.20, No. 1, pp.37-46.
  • [23] Lertnuwat B. (2018): Shapes of an air Taylor bubble in stagnant liquids influenced by different surface tensions. – International Journal of Applied Mechanics and Engineering. vol.23, No.1, pp.79-90.
  • [24] Salakij S. and Lertnuwat B. (2018): Influence of viscosity on the shape of an air Taylor bubble in a stagnant liquid under laminar condition in falling film region. – International Journal of Applied Engineering Research, vol.13, No.1, pp.8-13.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80218c52-e3a0-4be0-b4c4-0fb317847b1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.