PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Hilbert-Twin – A Novel Hilbert Transform-Based Method To Compute The Elastic Modulus In High-Resolution Mechanical Spectroscopy HRMS

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Hilbert-Twin – nowa metoda obliczeń modułu sprężystości w wysokorozdzielczej spektroskopii mechanicznej HRMS
Języki publikacji
EN
Abstrakty
EN
A novel Hilbert-twin (H-twin) method is introduced as an alternative method for the computation of the resonant frequency for exponentially damped free decays embedded in noise. We also present the comparison among the following methods used to compute the dynamic elastic modulus in solids: the parametric OMI (Optimization in Multiple Intervals), the Yoshida-Magalas (YM) interpolated discrete Fourier transform, the Hilbert-twin (H-twin), and discrete Fourier transform (DFT) methods. It is concluded that the OMI and YM methods are the best methods to compute the elastic modulus from discrete exponentially damped free-elastic decays embedded in unavoidable noise.
PL
W pracy przedstawiono nową metodę Hilbert-twin, którą opracowano do obliczeń częstotliwości rezonansowej wykładniczo tłumionych harmonicznych sygnałów odkształceń sprężystych próbki zawierających szum. Jest to pierwsza praca, która uwzględnia obecność i wpływ szumu na wyniki obliczeń modułu sprężystości metali i stopów metali. Porównano i przeanalizowano wyniki obliczeń dynamicznego modułu sprężystości uzyskanego z kilku metod: metody parametrycznej OMI (Optimization in Multiple Intervals), metody Yoshida-Magalas (YM) opartej na interpolowanej dyskretnej transformacie Fouriera, metody Hilbert-twin (H-twin) oraz dyskretnej transformaty Fouriera (DFT). Z przeprowadzonych badań wynika, że metody OMI i YM są najlepszymi metodami estymacji modułu sprężystości z dyskretnych sygnałów odkształceń sprężystych materiałów (wykładniczo tłumionych drgań swobodnych) zawierających szum.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522, 384-388 (2009).
  • [2] L.B. Magalas, M. Majewski, Toward high-resolution mechanical spectroscopy HRMS. Resonant frequency – Young’s modulus, Sol. St. Phen. 184, 473-478 (2012).
  • [3] M. Majewski, L.B. Magalas, Advances in computational high-resolution mechanical spectroscopy HRMS. Part 2 - Resonant frequency – Young’s modulus, IOP Conf. Series: Materials Science and Engineering 31, 012019 (2012).
  • [4] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14, 1201-1206 (1981).
  • [5] D. Agrež, A frequency domain procedure for estimation of the exponentially damped sinusoids, 12 MTC: 2009 IEEE Instrumentation and Measurement Technology Conference 1-3, 1295-1300 (2009).
  • [6] L.B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St. Phen. 115, 7-14 (2006).
  • [7] L.B. Magalas, A. Stanisławczyk, Advanced techniques for determining high and extreme high damping: OMI – A new algorithm to compute the logarithmic decrement, Key Eng. Materials 319, 231-240 (2006).
  • [8] L.B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137, 15-20 (2008).
  • [9] A.D. Poularikas (ed.), The Transforms and Applications. Handbook, CRC Press Inc., 1996.
  • [10] J.S. Bendat, A.G. Piersol, Analysis and Measurement Procedures, Wiley-Interscience, 1986.
  • [11] M. Feldman, Hilbert transform, envelope, instantaneous phase, and frequency, in Encyclopedia of Structural Health Monitoring, ed. by Christian Boller, Fu-Kuo Chang, Yozo Fujino, John Wiley & Sons, Ltd., 2009.
  • [12] M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform, Journal of Sound and Vibration 295, 518-530 (2006).
  • [13] K.-H. Robrock, Mechanical Relaxation of Interstitials in Irradiated Metals, Springer-Verlag, Berlin Heidelberg, 1990.
  • [14] H.J. Blythe, H. Kronmüller, A. Seeger, F. Walz, A review of the magnetic relaxation and its application to the study of atomic defects in α-Iron and its diluted alloys, phys. stat. sol. (a) 131, 233-345 (2000).
  • [15] T.O. Ogurtani, A. Seeger, Dislocation-enhanced Snoek peak associated with heavy interstitials in the presence of kinks moving harmonically in anisotropic body-centered-cubic metals, Phys. Rev. B 31, 5044-5057 (1985).
  • [16] J. Rubianes, L.B. Magalas, G. Fantozzi, J. San. Juan, The Dislocation-Enhanced Snoek Effect (DESE) in high-purity iron doped with different amounts of carbon, J. de Phys. 48, 185-190 (1987).
  • [17] T.O Ogurtani, A. Seeger, Nonlinear theory of the dislocation-enhanced Snoek effect and its connection with the geometric and/or thermal kink oscillations on nonscrew dislocations in body-centered-cubic metals, J. Appl. Phys. 69, 3704-3711 (1987).
  • [18] L.B. Magalas, On the interaction of dislocations with interstitial atoms in BCC metals using mechanical spectroscopy: the Cold Work (CW) peak, the Snoek-Köster (SK) peak, and the Snoek-Kê-Köster (SKK) peak. Dedicated to the memory of Professor Ting-Sui Kê, Acta Metallurgica Sin. 39, 1145-1152 (2003).
  • [19] T.O. Ogurtani, R. Güngör, The power spectrum associated with a kink chain oscillating in a non-Stokesian atmosphere of paraelastic interstitials, J. Alloys and Compounds 211/212, 140-143 (1994).
  • [20] T.O. Ogurtani, A. Seeger, Internal friction and viscosity associated with mobile interstitials in the presence of a kink harmonically or uniformly moving in anisotropic body-centered-cubic metals, J. Appl. Phys. 55, 2857-2868 (1984).
  • [21] T.O. Ogurtani, A. Seeger, Nonlinear theory of power dissipation due to the motion of heavy interstitials in a fluctuating inhomogeneous field with a strong bias: special reference to the Snoek-Köster relaxation, J. Appl. Phys. 62, 852-861 (1987).
  • [22] L.B. Magalas, M. Majewski, Free Decay Master Software Package, 2014.
Uwagi
EN
This work was supported by the National Science Centre (NCN) in Poland under grant No. N N507 249040
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-801cfcb5-1c53-4898-ac62-59ab2cfa8baa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.