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REGRESSION METHODS

FOR PREDICTING RATE AND TYPE OF FAILURES

OF WATER CONDUITS

METODY REGRESYJNE

DO PRZEWIDYWANIA POZIOMU AWARYJNOŒCI

I RODZAJU USZKODZEÑ PRZEWODÓW WODOCI¥GOWYCH

Abstract: This paper demonstrates that regression trees (RT) and classification trees (CT) can be applied to

predict the rate and type of failures of water conduits. An analysis by means of a tree building algorithm

consists in finding a set of logical division conditions and determining correlations between the predictors

(independent variables) and the dependent variable, in consequence of which prediction results are obtained.

The failure rate of distribution pipes (DP) and house connections (HC) was predicted on the basis of

operational data for the years 2008–2014 for one water supply zone of a medium-sized Polish city. The

independent variables were: the length of a particular type of conduits and the number of DP and HC failures

recorded in a particular year. Separate regression tree models were created for modelling the failure rate of

respectively DP and HC. In the case of the classification problem, one model was built for jointly DP and HC

failures. In this model the qualitative dependent variable was type of failure while the predictors were material

and conduit diameter and type. The results indicate that the RT method can be used to evaluate the failure rate

of water conduits. Whereas the classification of failure types was not fully satisfactory, which means that

further research in this area is needed. The calculations were performed using Statistica 13.1.

Keywords: regression methods, water supply network, kind of damage of water conduits

1. Introduction

Today mathematical modelling is an indispensable tool for solving many com-

plicated engineering problems. Knowledge, experience and intuition are used to build

mathematical models of random experiments. But prior to modelling one should analyse

the experimental (operational data) to be used to create a model. Since it is a highly

subjective part (combining to some extent science and art) of the cognitive work, the

analysis of the data can lead to quite different conclusions. Bearing this in mind, the

operational data obtained from water companies for the purpose of building of models
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should be properly handled and subjected to a qualitative and quantitative analysis. This

paper presents the application of a selected modelling method – the regression method

(classification and regression trees) – to the prediction of the failure rate of water

conduits and the type of damage to the latter.

1.1. Regression and classification tress

Classification and regression trees have been used for predicting respectively

qualitative and quantitative variables. This method of analysing and predicting data

began to be used in the 1960s, but it was as late as 1984 when it was popularized by

Breiman [1]. Generally speaking, a regression tree (RT) or a classification tree (CT) is

a directed graph comprising a root and nodes (leaves), in which conditions applying to

the variables are checked, and branches containing decision rules. As a rule, it is easier,

in comparison with the classification method, to implement the regression tree method

and analyse its results [1]. An analysis by means of a tree building algorithm consists in

finding a set of logical division conditions and determining correlations between the

predictors and the dependent variable, in consequence of which prediction results are

obtained [1]. The advantage of using trees is that the results of prediction are good and

they can be relatively easily interpreted [2]. Moreover, regression tree models are

resistant to outliers, which often and for different reasons crop up in the operational data

obtained from water companies. If outliers appear, they are isolated in small nodes. If

there are not many of them, they can be omitted [1]. The structure of a tree (the number

of branches and nodes), ensuring the best prediction, depends on the number of

divisions. Divisions are made until the nodes are uniform or comprise the specified

number of cases. The optimal regression tree model is selected on the basis of the

resubstitution cost, where the square error is calculated from the relation [1]:
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in which the training samples consists of points (xi, yi) at i = 1, 2, ..., N. The calculations

are performed for the same data set which was used to build model d [2]. A regression

tree is created through iterative divisions in the nodes to minimize the cost [1].

The notion of “cost” in the CT and RT methods [2] is a generalized idea that a model

with the smallest error yields the best predictions. A measure of the cost is a ratio of

the incorrectly defined cases to all the cases. Thus an optimal model should be

characterized by the lowest cost. Moreover, V-fold cross validation should be carried out

in order to select a proper tree size. The cost of the cross validation is calculated as the

average cost of the V test samples. This average is an estimate of the cross validation

cost [2]. It is required that a given tree be created many times and that the data set be

adequate for making the above mentioned divisions. For the division into successive

branches and levels it is essential to determine the so-called importance, i.e. rank the

significance of the predictors using the scale of 0–1. This approach is helpful in
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identifying independent variables with significant prediction power towards the de-

pendent variables [1, 2].

Today regression and classification trees are used in many fields of broadly

understood environmental engineering. For example, the failure frequency of the

pumping systems used in the refining industry was modelled by means of RTs and CTs

[3]. This way of modelling was found to contribute to greater reliability of the whole

pumping system, which is highly important since the refining industry (similarly as

water distribution systems) belongs to the critical infrastructure. Regression trees can be

connected into complexes to form a distributed random forest (DRF). The latter was

used to predict the pollution of underground water with nitrates [4]. Sun et al. used DRF

to model the amount of solar radiation depending on the degree of air pollution [5],

noting the ability of DRF to indicate the significance ranking of the independent

variables used to build the model. Wang et al. proposed to use DRF to estimate the risk

of flooding [6]. Malinowska [7] tested the suitability of classification and regression

tree modelling for estimating the risk of damage to buildings in mining damage areas in

Upper Silesia. A survey of the available world literature on the subject shows that also

financial problems [8] and the probability of an accident occurring on a motorway [9]

can be modelled using the RT and CT methods.

1.2. Water-pipe network

At the present stage of development, when the methods of designing water supply

systems have been sufficiently well verified and when hydraulics (generally speaking,

fluid mechanics) is a well-known and widely applied discipline, it seems that in the case

of water distribution systems the emphasis should be placed on their upgrading and

proper operation (taking into consideration also the dependence between water quality

and the pipe material) [10] and on research on the operational reliability and proper

management of water supply [11] in order to extend the life and failure-free operation

of the underground facilities. The operation of each element of a water supply system

requires an individual approach to the description and modelling of the phenomena

taking place in a given facility, taking into account the latter’s function. For example,

the approach to the modelling of pressure variation and flows in a water supply network

[12] should be different than the one (e.g. employing artificial intelligence) used to

select water conduits for rehabilitation [13]. Problems relating to the operational

reliability and failure frequency of water supply networks and water losses have been

investigated by many research teams in Poland [14–17], which has contributed to the

development of this science, including its modelling aspect, not only in Poland, but also

abroad [18, 19]. This paper is an attempt to supplement the above research with the

modelling of reliability indicators (using the water conduit failure rate as an example)

by means of regression methods (machine learning methods to which regression and

classification trees belong). As a modelling tool RTs and CTs are widely used in many

fields, but practically until now no application of this methodology to the analysis of the

failure frequency level and the prediction of the failure rate of water conduits has been

reported in the world and domestic literature. This induced the author to undertake this
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subject. Regression trees are used here to model the failure rate (a quantitative

dependent variable) while classification trees are employed to predict the type of failure

(a qualitative dependent variable).

2. Materials and methods

The failure rate, � [fail./(km·year)] of water conduits was predicted using the

regression tree method. It was predicted separately for distribution pipes (DP) – �r

and house connections (HC) – �p, which meant that two different tree models had to

be built. Rates � were the dependent variables while the predictors (independent

variables) were: the length of the conduit of a particular type (Lp and Lr) the number of

failures (Np and Nr) of respectively HC and DP, recorded in a given year. Conduit

length and number of failures were selected as the basic variables since such data are

definitely recorded by water companies and so are easily available. As part of this

research also the suitability of this basic information (lacking details on the pipe

material and diameter) for predicting the failure rate by means of regression trees was

verified.

Moreover, classification trees were used to predict the type of failure. In this case,

one common model was created for both distribution pipes and house connections. The

vector of qualitative independent variables comprised: the material – M (cast iron, steel,

PVC and PE) and the type of conduit – T (DP and HC). The quantitative predictor was

the diameter – D. The predicted qualitative dependent variable was the type of failure –

R (corrosion, hole, longitudinal fracture and lateral fracture). When building CT models

three kinds of goodness of fit: the Gini coefficient, the Chi-square statistic and the

G-square statistic were used as well as 10-fold cross validation was applied.

Operational data for the years 2008–2014 obtained from a water company in one of

the Polish medium-sized cities were used to determine the real failure rate � and to

predict the failure rate and type of damage by means of the regression and classification

tree method. The whole water distribution system was divided into 55 supply zones.

This particular analysis focused on one selected water supply zone in which the pipeline

pressure amounted to 0.4 MPa. The water pipe network in this zone supplies water to

the inhabitants of one borough within the city. The overall length of the distribution

pipes and the house connections was constant over the considered period, amounting to

31.7 km. The length of the distribution pipelines, made of grey cast iron (48.6%,

8.5 km), PVC (38.9%, 6.8 km) and PE (12.5%, 2.2 km), amounted to 17.5 km. In total

there were 599 house connections with an overall length of 14.2 km. Water is supplied

to the considered zone (with the total area of 41 km2 and a population of about 10 000)

from the so-called auxiliary drinking water intake, i.e. a 100 m deep well from which

1920 m3 of water per 24 h are drawn from Upper Jurassic deposits.

The values of the dependent variables and predictors for the years 2008–2014 are

given in Tables 1 and 2.
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Table 1

Predictors and dependent variables – RT method

Lr

[km]

Lp

[km]

Nr

[fail.

Np

[fail.]

�r

[fail./(km·year)]

�p

[fail./(km·year)]

17.5 14.2 2–5 3–10 0.11–0.29 0.21–0.70

Table 2

Predictors and dependent variables – CT method

M T
D

[mm]
R

Cast iron, steel, PVC, PE
Distribution pipe,

house connection
25–250

Corrosion,

longitudinal fracture,

lateral fracture, hole

3. Results and discussion

The calculations were performed using Statistica 13.1. Several regression tree models

for predicting failure rates �r and �p and failure type R were built. Optimal RT and CT

models, whose structures are shown in Figs 1 and 2, were selected. In the Fig. 1 the

average value (Av) and variance (Var) of independent variable were presented. The

model most suitable for predicting the failure rate of the distribution pipes and the house

connections was selected taking into account: the lowest resubstitution cost, the small

degree of model complexity and the quality of prediction, i.e. the convergence of the

real (experimental) dependent variable with the values obtained from modelling.

The architectures of the two models (Fig. 1) seem to be the same. Actually, the

number of divided nodes (1 node) and that of end nodes (2 nodes) in the two models is

the same, but since the values of the independent variables are different, the average

and variance values considerably differ between the models (Fig. 1a and 1b).

Moreover, a different value is responsible for the division of the divided node into two

end nodes.

In the case of the classification problem, the selection of the model most suitable for

predicting the type of failure was based on not only the comparison of the costs, but also

on the number of incorrectly classified cases and the degree of model complexity. The

model using the Gini coefficient was selected. The architecture of a CT model (Fig. 2)

is a bit more complex than that of an RT model since it includes 2 divided nodes and

3 end nodes.

Independent variable M, i.e. the conduit material, was responsible for the division

into the successive tree levels. On the first level, it was steel and all the other kinds of

material while on the next level it was PVC. One should note that corrosion and fracture

were the dependent variables which dominated in the particular nodes of the CT model.

This means that the failure type “hole” was not of much importance for determining the

quality of the model. This could be due to the fact that this dependent variable was the

least numerous one.
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Resubstitution costs were used to evaluate model quality, but in the case of the CT

model, also the cost of cross validation was taken into account. The cost amounted to

0.00073 for the RT model describing the failure rate of the distribution pipes and to

0.0056 (a value by one order of magnitude higher) for the model describing the failure

rate of the house connections. For the other models (other than the optimal model) the

costs would linearly increase with the number of divided nodes and end nodes (i.e. with
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ID = 1 N = 7

Av = 0.440000

Var = 0.024800

ID = 2 N = 3

Av = 0.280000

Var = 0.003267

ID = 3 N = 4

Av = 0.560000

Var = 0.007350

Np

<= 6 > 6

a)

b)

ID = 1 N = 7

Av = 0.178571

Var = 0.004555

ID = 2 N = 4

Av = 0.125000

Var = 0.000675

ID = 3 N = 3

Av = 0.250000

Var = 0.000800

Nr

<= 3.5 > 3.5

Fig. 1. Optimal regression tree structure: a) distribution pipes, b) house connections



increasing model complexity) for both DP and HC. A comparison of the resubstitution

costs for the selected RT models for predicting the failure rate indicates that despite the

same regression tree architecture, the models considerably differ in their modelling

quality (expressed by the resubstitution cost value). As regards the selected optimal

model for classifying the type of failure, the resubstitution cost amounted to 0.39394

and the cross validation cost to 0.40909. For the other CT models the values were

higher, except for one tree model which was characterized by the resubstitution cost of

0.33333 and the cross validation cost of 0.39394. These values are a little lower than in

the case of the selected optimal CT model, but the tree structure was highly complex as

it had 5 divided nodes and 6 end nodes. As already mentioned, when selecting a model

one should consider not only the quality of predicted data and the costs incurred to build

the model, but also the model architecture simplicity which makes for the easier

interpretation of the results and a greater generalization capability. In the case of more

complex models there is a danger of a too close fit between the real data and the

predicted ones, whereby the model loses its ability to adapt to changing conditions

which may occur when an independent variables vector other than the one used to build

the model is included in the latter.

Also the independent variables were compared with regard to significance ranking.

For the two optimal RT models the number of failures in a given year (Np and Nr) was

the independent variable with the highest importance of 1.00. This is shown in Fig. 1

where the number of failures is the variable responsible for the division into the

successive regression tree levels. It emerges from the analysis that the length of

conduits actually does not affect the building and quality of RT models. This can be due

to the fact that the vector of predictors was not numerous, i.e. it consisted of only two
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ID=3 N=37

lateral fracture

ID=2 N=29

corrosion

ID=10 N=8

longitudinal fracture

ID=11 N=29
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material

= steel    ... = other

material

= PVC     ... = other

Fig. 2. Optimal structure of classification tree



variables. Quite a different conclusion emerged from an analysis of the results of

modelling the failure rate in another Polish city by means of regression trees [20]. In

this case, the length of pipelines was the dominant variable. However, the difference

can stem from another independent variable vector used to build the model. Besides

conduit length, such variables as: diameter, year of construction and material were the

predictors in the above work [20]. Nevertheless, in the present paper such basic

independent variables as N and L were used on purpose (which should be emphasized)

in order to find out if regression trees could be used to model the failure rate of water

conduits even when little information on a considered water distribution system is

available. The significance of the particular independent variables for the CT model is

illustrated in Fig. 3. The most important predictor was material. This is also true for

engineering practice since in many cases the type of failure is closely connected with

the material from which the conduit is made. For example, material corrosion will never

occur in the case of a pipeline made of plastic. Diameter and type of conduit had

a similar (relatively high) significance in the considered classification problem.

An analysis of the rate-of-failure prediction results for the distribution pipes and the

house connections (Figs 4 and 5) shows that the use of only two variables in the

predictor vector did not affect the quality of modelling. Even though the results are not

so perfectly convergent as in [20], they are satisfactory from the engineering point of

view. The maximum absolute error of failure rate modelling amounted to 0.04

fail./(km·year) and 0.14 fail./(km � year) for respectively DP and HC. Figure 4 shows

that for the five of the seven analysed years the modelled failure rates are slightly higher

than the real ones. In the case of distribution pipes such a small overestimation does not

raise doubts as to the quality of modelling since a predicted failure rate higher than the

real one can only induce the network operator to decide to renovate or replace selected

network segments.
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One should bear in mind that the rank of distribution pipes is higher than that of

house connections, which means that the small underestimation of the failure rate for

the years 2009 and 2012 (Fig. 5) cannot provide ground for the statement that RT

models are not a good tool for predicting the failure rate of house connections. It should

be noted, however, that the results presented in this paper are for the prediction of

failure rates �r and �p on the basis of the training sample, i.e. the data sample used to

build the model. Therefore it seems reasonable to continue research on methods of

building regression tree models and applying them so that at a later stage their quality

could be verified using independent variables not included in the analysis before.

Regression Methods for Predicting Rate... 201

Fig. 4. Real and predicted values of failure rate (�r) of distribution pipes

Fig. 5. Real and predicted values of failure rate (�p) of house connections



Table 3 shows the recorded types of failure and the ones predicted by means of the

selected optimal CT model. Over the 7 years of operation the total of 44 house

connection failures (of all types) occurred. 15 holes, 8 longitudinal fractures and 6

lateral fractures were registered and in 15 cases a pipe was corroded. 22 failures: 13

lateral fractures and 9 longitudinal fractures affected the distribution pipes. Owing to the

fact that a single classification tree model was built on the basis of data for DP and HC

jointly (as opposed to failure rate modelling for which two different models were

created), Table 3 shows all the failures for the years 2008–2014.

Table 3

Registered and predicted types of damages

R – observed R – predicted R – observed R – predicted

lateral fracture lateral fracture corrosion corrosion

lateral fracture lateral fracture longitudinal fracture lateral fracture

lateral fracture lateral fracture corrosion corrosion

lateral fracture lateral fracture longitudinal fracture longitudinal fracture

lateral fracture lateral fracture corrosion corrosion

hole corrosion corrosion corrosion

hole corrosion lateral fracture lateral fracture

hole corrosion longitudinal fracture pêkniêcie poprzeczne

hole corrosion lateral fracture lateral fracture

corrosion corrosion corrosion corrosion

corrosion corrosion hole corrosion

hole corrosion longitudinal fracture longitudinal fracture

longitudinal fracture corrosion longitudinal fracture longitudinal fracture

hole corrosion longitudinal fracture longitudinal fracture

hole corrosion longitudinal fracture longitudinal fracture

lateral fracture lateral fracture hole corrosion

lateral fracture lateral fracture longitudinal fracture longitudinal fracture

lateral fracture lateral fracture longitudinal fracture lateral fracture

hole corrosion lateral fracture longitudinal fracture

hole lateral fracture corrosion corrosion

longitudinal fracture lateral fracture corrosion corrosion

corrosion corrosion corrosion corrosion

hole corrosion lateral fracture lateral fracture

hole corrosion lateral fracture lateral fracture

hole corrosion corrosion corrosion

corrosion corrosion longitudinal fracture lateral fracture

hole lateral fracture lateral fracture lateral fracture

corrosion corrosion lateral fracture lateral fracture

longitudinal fracture lateral fracture lateral fracture lateral fracture

longitudinal fracture longitudinal fracture lateral fracture lateral fracture

longitudinal fracture lateral fracture longitudinal fracture lateral fracture

lateral fracture lateral fracture corrosion corrosion

longitudinal fracture lateral fracture lateral fracture lateral fracture
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The failures incorrectly classified by the CT model are marked red in Table 3.

Altogether there were 26 such cases from the total of 66 recorded failures in the

considered water supply network, which amounts to over 39%. This is not a perfect

result. Therefore it seems that further research on the application of classification trees

to the modelling such a qualitative parameter as the type of failure of distribution pipes

and house connections is necessary. In the case of the other statistics, i.e. the Chi-square

statistic and the G-square statistic, the number of incorrectly classified cases was almost

identical, amounting to respectively 26 and 24. This means that the type of fit statistic

has no major effect on the quality of the model and its classification capability.

It is worth noting that in half of the incorrectly classified cases the model confused

damage hole with pipeline material corrosion. This can be due to the fact that an

independent variable having the same value, i.e. a house connection diameter of 32 mm

or 40 mm, was associated with the two types of inoperability. The worse results of

modelling (quite many incorrectly classified cases) by the CT method in comparison

with the RT method, where the failure rate was predicted reasonably correctly (with an

error admissible from the engineering point of view), can be ascribed to the

considerably higher resubstitution cost in the classification problem. A comparison of

Figs 1 and 2 and the prediction results (Figs 4 and 5 and Table 3) shows that the model

with the more complex architecture (Fig. 2) hardly yields better modelling results.

Obviously, regression problems and classification problems belong to two separate

classes, whereby the parameters of the two types of models are different. Hence the

above comparison can be an oversimplification. Nevertheless, similarly as in other

regression methods, also in the case of the tree method, model simplicity should be

a consideration in selecting a particular model.

4. Conclusions

There are many modelling methods, but recently the so-called machine learning

methods, including the regression and classification tree method, are increasingly often

used. At the present stage of the research on the operational reliability of municipal

systems, modelling and predicting the failure rate and type of damage for water

conduits seems to be critically important considering that in the case of serious failures,

decisions must be promptly taken. As regards the use of the CT method for predicting

the type of failure of water conduits, the results are not fully satisfactory because of the

quite high percentage of incorrectly classified cases. This is rather disappointing since

many of the actions taken by the network operator are connected with this type of

failure. The approach to repairing a given section of a pipeline when the latter is

fractured for a considerable distance along its length should be different than the one

adopted to deal with a local corrosion pit or a perforation in the form of a hole.

Therefore as part of further research some changes need to be made to the CT model in

order to avoid so many incorrectly classified failure types. Perhaps when such variables

as the pressure in the conduit, the temperature of the ground surrounding the pipeline

and the pipeline laying depth are included in the vector of predictors, the quality of fit

will improve.
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In this paper RT models were applied to predict the failure rate of distribution pipes

and house connections. For both DP and HC the RT models had one divided node and

two end nodes. The resubstitution cost amounted to 0.0056 and 0.00073 for the model

describing respectively the house connections and the distribution pipes. Even though

only basic independent variables and a very simple tree architecture were used, the

results are satisfactory, indicating that RT models can be an alternative to other

modelling methods. Still, further research on RT models with the independent variables

vector comprising variables previously not used in model building is needed. Such

research, covering other water distribution systems, will soon be conducted to acquire

data on the basis of which it will be possible to make some generalizations and advance

further theses concerning the prediction of the failure rate and operational reliability of

underground facilities.

As regards the CT model, the use of a more complex tree architecture than for the

regression model did not translate into a higher quality of the predicted dependent

variables (about 39% of incorrectly classified cases) or a lower cost (the resubstitution

cost remained at about 0.39). Perhaps if two separate CT models are created for the

distribution pipes and the house connections, as it was done in the case of the regression

trees, the quality of the output (predicted) data will improve. This is another task for

future research. In this paper for the first time an attempt has been made to apply the

classification tree method to the modelling of types of water conduit failures in Poland.

Further research in this area is both advisable and necessary.
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METODY REGRESYJNE DO PRZEWIDYWANIA POZIOMU AWARYJNOŒCI

I RODZAJU USZKODZEÑ PRZEWODÓW WODOCI¥GOWYCH

Wydzia³ In¿ynierii Œrodowiska, Politechnika Wroc³awska, Wroc³aw

Abstrakt: W pracy przedstawiono mo¿liwoœæ zastosowania drzew regresyjnych i klasyfikacyjnych (RT i CT)

do przewidywania wskaŸnika intensywnoœci uszkodzeñ przewodów wodoci¹gowych oraz rodzaju uszkodze-

nia. Analiza wykorzystuj¹ca algorytm budowy drzew polega na znalezieniu zbioru logicznych warunków po-

dzia³u oraz znalezieniu relacji pomiêdzy predyktorami (zmiennymi niezale¿nymi) a zmienn¹ zale¿n¹, co

w konsekwencji prowadzi do uzyskania wyników prognozowania. Przewidywanie wskaŸnika awaryjnoœci

przewodów rozdzielczych i przy³¹czy wykonano na podstawie danych eksploatacyjnych z lat 2008–2014 dla

jednej wybranej strefy zasilania w wodê œredniej wielkoœci polskiego miasta. Zmiennymi niezale¿nymi by³y:

d³ugoœæ danego typu przewodów oraz liczba uszkodzeñ zaobserwowanych w danym roku na ruroci¹gach roz-

dzielczych i przy³¹czach. Stworzono oddzielne modele drzew regresyjnych do modelowania awaryjnoœci

przewodów rozdzielczych i przy³¹czy. W przypadku zagadnienia klasyfikuj¹cego zbudowano jeden model

opisuj¹cy ³¹cznie uszkodzenia zaobserwowane na ruroci¹gach rozdzielczych i przy³¹czach. W tym modelu ja-

koœciow¹ zmienn¹ zale¿n¹ by³ rodzaj uszkodzenia, a predyktorami materia³, œrednica i typ przewodu. Uzyska-

ne wyniki wskazuj¹, ¿e metoda RT mo¿e byæ stosowana do oceny poziomu awaryjnoœci przewodów wodo-

ci¹gowych. Natomiast klasyfikacja rodzaju uszkodzeñ nie by³a ca³kowicie satysfakcjonuj¹ca, co œwiadczy

o koniecznoœci prowadzenia dalszych badañ w tym zakresie. Obliczenia przeprowadzono w programie Stati-

stica 13.1.
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