Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-801a2969-1668-45af-9ee9-e8f419cd2003

Czasopismo

Chemical and Process Engineering

Tytuł artykułu

Review on hierarchically microstructured monolithic reactors for high yield continuous production of fine chemicals

Autorzy Mrowiec-Białoń, J.  Ciemięga, A.  Maresz, K.  Szymańska, K.  Pudło, W.  Jarzębski, A. B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Preparation and properties of hierarchically structured porous silica monoliths have been discussed from the viewpoint of their application as continuous microreactors for liquid-phase synthesis of fine chemical in multi kilogram scales. The results of recent topical papers published by two research teams of Institute of Chemical Engineering Polish Academy of Sciences (ICE) and Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology (SUT) have been analyzed to specify the governing traits of microreactors. It was concluded that even enhancement factor of 100 in activity, seen in enzyme catalyzed reactions, can be explained by a proportional reduction of its physical constraints, i.e. huge enhancement of external mass transfer and micromixing. It is induced by very chaotic flows of liquid in tens of thousands of waving connected channels of ca. 25–50 mm in diameter, present in the skeleton. The scale of enhancement in the caseof less active catalysts was smaller, but still large enough to consider the most practical applications.
Słowa kluczowe
PL mikroreaktory   synteza wewnątrzpłynna   intensyfikacja procesu   materiały nanostrukturalne  
EN microreactors   in-flow synthesis   process intensification   nanostructured materials  
Wydawca Komitet Inżynierii Chemicznej i Procesowej Polskiej Akademii Nauk
Czasopismo Chemical and Process Engineering
Rocznik 2018
Tom Vol. 39, nr 4
Strony 367–--375
Opis fizyczny Bibliogr. 27 poz.
Twórcy
autor Mrowiec-Białoń, J.
  • Institute of Chemical Engineering Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice, jmrowiec@polsl.pl
  • Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology, 10 Ks. M. Strzody 9, 44-100 Gliwice
autor Ciemięga, A.
  • Institute of Chemical Engineering Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice
autor Maresz, K.
  • Institute of Chemical Engineering Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice
autor Szymańska, K.
  • Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology, 10 Ks. M. Strzody 9, 44-100 Gliwice, Katarzyna.Szymanska@polsl.pl
autor Pudło, W.
  • Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology, 10 Ks. M. Strzody 9, 44-100 Gliwice
autor Jarzębski, A. B.
  • Institute of Chemical Engineering Polish Academy of Sciences, Bałtycka 5, 44-100 Gliwice
  • Department of Chemical Engineering and Process Design, Chemical Faculty, Silesian University of Technology, 10 Ks. M. Strzody 9, 44-100 Gliwice
Bibliografia
1. Chrobok A., Baj S., Pudło W., Jarz˛ebski A., 2009. Supported hydrogensulfate ionic liquid catalysis in Baeyer-Villiger reaction. Appl. Catal. Gen. A., 366, 22–28. DOI: 301 10.1016/j.apcata.2009.06.040.
2. Ciemięga A., Maresz K., Malinowski J.J., Mrowiec-Białoń J., 2017a. Continuous-flow monolithic silica microreactors with arenesulphonic acid groups: structure-catalytic activity relationships. Catalysts, 7(9), 255. DOI: 10.3390/catal7090255.
3. Ciemięga A., Maresz K., Mrowiec-Białoń J., 2017b. Continuous-flow chemoselective reduction of cyclohexanone in a monolithic silica-supported Zr(OPri)4 multichannel microreactor. Microporous Mesoporous Mater., 252, 140–145. DOI: 10.1016/j.micromeso.2017.06.023.
4. Ciemięga A., Maresz K., Malinowski J.J., Mrowiec-Białoń J., 2018a. Comparative study of continuous-flow microreactors based on silica monoliths modified with Lewis acid centres. Chem. Proc. Eng., 39, 33–38. DOI: 10.24425/119097.
5. Ciemięga A., Maresz K., Mrowiec-Białoń J., 2018b. Meervein-Ponndorf-Vereley reduction of carbonyl compounds in monolithic siliceous microreactors doped with Lewis acid centres. Appl. Catal. A Gen., 560, 111–118. DOI: 10.1016/j.apcata.2018.04.037.
6. El Kadib A., Chimenton R., Sachse A., Fajula F., Galarneau A., Coq B., 2009. Functionalized inorganic monolithic microreactors for high productivity in fine chemicals catalytic synthesis. Angew. Chem. Int. Edit., 48, 4969–4972. DOI: 10.1002/anie.200805580.
7. Galarneau A., Sachse A., Said B., Pelisson C.H., Boscaro P., Brun N., Courtheoux, L., Olivi-Tran N., Coasne B.,
8. Fajula F., 2016a. Hierarchical porous silica monoliths: A novel class of microreactors for process intensification in catalysis and adsorption. Cr. Chim., 19, 231–247. DOI: 10.1016/j.crci.2015.05.017.
9. Galarneau A., Abid Z., Said B., Didi Y., Szyma´nska K., Jarz˛ebski A., Tancret F., Hamaizi H., Bengueddach A., Di Renzo F., Fajula F., 2016b. Synthesis and textural characterization of mesoporous and meso-/macroporous silica monoliths obtained by spinodal decomposition. Inorganics, 4(2), 9. DOI: 10.3390/inorganics4020009.
10. Koreniuk A., Maresz K., Odrozek K., Jarzębski A.B., Mrowiec-Białoń J., 2015a. Highly effective continuousflow monolithic silica microreactors for acid catalyzed processes. Appl. Catal. Gen. A., 489, 203–208. DOI: 10.1016/j.apcata.2014.10.047.
11. Koreniuk A., Maresz K., Mrowiec-Białoń J., 2015b. Supported zirconium-based continuous-flow microreactor for effective Meerwein-Ponndorf-Verley reduction of cyclohexanone. Catal. Commun., 64, 48–51. DOI: 10.1016/j.catcom.2015.01.021.
12. Koreniuk A., Maresz K., Odrozek K., Mrowiec-Białoń J., 2016. Titania-silica monolithic multichannel microreactors. Proof of concept and fabrication/structure/catalytic properties in the oxidation of 2,3,6-trimethylphenol. Microporous Mesoporous Mater., 229, 98–105. DOI: 10.1016/j.micromeso.2016.04.020.
13. Maresz K., Ciemięga A., Mrowiec-Białoń J., 2018. Selective reduction of ketones and aldehydes in continuousflow microreactor – kinetic studies. Catalysts, 8(5), 221. DOI: 10.3390/catal8050221.
14. Nakanishi K., 1997. Pore structure control of silica gels based on phase separation. J. Porous Mater., 4, 67-112 DOI: 10.1023/A:1009627216939.
15. Pudło W., Gawlik W., Mrowiec-Białoń J., Buczek T., Malinowski J.J., Jarz˛ebski A.B., 2006. Materials with multimodal hierarchical porosity. In˙z. Chem. Proc., 27, 177–185.
16. Sachse A., Galarneau A., Fajula F., Di Renzo F., Creux P., Coq B., 2011. Functional silica monoliths with hierarchical uniform porosity as continuous flow catalytic reactors. Microporous Mesoporous Mater., 140, 58–68. DOI: 10.1016/j.micromeso.2010.10.044.
17. Sachse A., Hulea V., Finiels A., Coq B., Fajula F., Galarneau A., 2012. Alumina-grafted macro-/mesoporous silica monoliths as continuous flow microreactors for the Diels-Alder reaction. J. Catal., 287, 62-67. DOI: 10.1016/ j.jcat.2011.12.003.
18. Smått J.H., Schunk S., Linden M., 2003. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chem. Mater., 15, 2354–2361. DOI: 10.1021/cm0213422.
19. Stroock A.D., Dertinger S.K.W., Ajdari A., Mezic I., Stone H.A., Whitesides G.M., 2002. Chaotic mixer for microchannels. Science, 295, 647–651. DOI: 10.1126/science.1066238.
20. Szymańska K., Bryjak J., Mrowiec-Białoń J., Jarzebski A.B., 2007. Application and properties of siliceous mesostructured cellular foams as enzymes carriers to obtain efficient biocatalysts. Microporous Mesoporous Mater., 99, 167–175. DOI: 10.1016/j.micromeso.2006.08.035.
21. Szymańska K., Pudło W., Mrowiec-Białoń J., Czardybon A., Kocurek J., Jarzębski A.B., 2013. Immobilization of invertase on silica monoliths with hierarchical pore structure to obtain continuous flow enzymatic microreactors of high performance. Microporous Mesoporous Mater., 170, 75–82. DOI: 10.1016/j.micromeso.2012.11.037.
22. Szymańska K., Pietrowska M., Kocurek J., Maresz K., Koreniuk A., Mrowiec-Białoń J., Widłak P., Magner E., Jarzębski A., 2016a. Low back-pressure hierarchically structured multichannel microfluidic bioreactors for rapid protein digestion – Proof of concept. Chem. Eng. J., 287, 148–154. DOI: 10.1016/j.cej.2015.10.120.
23. Szymańska K., Odrozek K., Zniszczoł A., Torrelo G., Resch V., Hanefeld U., Jarzębski A.B., 2016b. MsAcT in siliceous monolithic microreactors enables quantitative ester synthesis in water. Catal. Sci. Technol., 6, 4882–4888. DOI: 10.1039/c5cy02067k.
24. Szymańska K., Jarz˛ebski A.B., Kowalczykiewicz D., Odrozek K., 2017. Sposób otrzymywania porowatych monolitów zol-żelowych o zwiększonych wymiarach geometrycznych przy zachowaniu hierarchicznej struktury porów. Polish Patent application P.423320.
25. Tanimu A., Jaenicke S., Alhooshani K., 2017. Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications. Chem. Eng. J., 327, 792–821. DOI: 10.1016/j.cej.2017.06.161.
26. Wohlgemuth R., Plazl I., Znidarsic-Plazl P., Gernaey K.V., Woodley J.M., 2015. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends Biotechnol., 33, 302–314. DOI: 10.1016/j.tibtech.2015.02.010.
27. Zielinska K., Szymańska K., Mazurkiewicz R., Jarzebski A., 2017. Batch and in-flow kinetic resolution of racemic 1-(N-acylamino) alkylphosphonic and 1-(N-acylamino) alkylphosphinic acids and their esters using immobilized penicillin G acylase. Tetrahedron-Asymmetr., 28, 146–152. DOI: 10.1016/j.tetasy.2016.11.007.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-801a2969-1668-45af-9ee9-e8f419cd2003
Identyfikatory
DOI 10.24425/122957