PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content of phenolic compounds in soils originating from two long-term fertilization experiments

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zawartość związków fenolowych w glebach pochodzących z dwóch trwałych doświadczeń nawozowych
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to compare the impact of three systems of multiannual fertilization applied in two long-term field experiments on the content of phenolic compounds in the soil. In the study, both natural (manure, slurry) and mineral (NPK) fertilizers were used, along with combined, organic-and-mineral fertilization. Experiment I was established in 1972 on grey brown podzolic soil; experiment II, in 1973 on brown soil. In both experiments crops were cultivated in a 7-year rotation, with a 75% share of cereals. The experimental samples were taken from the top layer of soil after 36 (experiment I) and 35 (experiment II) years following the establishment of the experiments. It was demonstrated that the presence of phenolic compounds in the soils was significantly dependent on the contents of organic C and total N, type of soil and the type and dose of used fertilizers. In grey brown podzolic soil, the content of total phenolic compounds was at a lower level than the content found in brown soil. Multiannual fertilization contributed to an increase in the content of total phenolic compounds in relation to the values obtained in control objects, which was particularly reflected in the soil originating from objects fertilized with slurry applied at a dose being equivalent to manure in terms of the amount of introduced organic carbon. The percentage of water-soluble phenols in the total content of these compounds in grey brown podzolic soil was at the level of 18.4%, while in brown soil it amounted to 29.1%.
PL
Związki fenolowe to grupa substancji biologicznie aktywnych, pochodząca najczęściej z naturalnych przemian substancji organicznej bądź z biosyntezy prowadzonej przez mikroorganizmy. Istota działania tych związków w glebie polega na zaburzaniu przemian metabolicznych w roślinie, co powoduje zahamowanie ich wzrostu i obniżenie plonowania. Celem pracy było porównanie wpływu trzech systemów wieloletniego nawożenia stosowanego w dwóch trwałych doświadczeniach polowych na zawartość związków fenolowych w glebie. W badaniach stosowano nawozy naturalne (obornik, gnojowica), mineralne (NPK) oraz nawożenie łączne organiczno-mineralne. Doświadczenie I założono w 1972 r. na glebie płowej, natomiast doświadczenie II w 1973 r. na glebie brunatnej. W obu doświadczeniach rośliny uprawiano w 7-letnim zmianowaniu, z 75% udziałem zbóż. Materiał do badań stanowiły próbki pobrane z wierzchniej warstwy gleby po 36 (doświadczenie I) i 35 (doświadczenie II) latach od chwili założenia doświadczeń. Wykazano, że obecność związków fenolowych w glebach była istotnie uzależniona od zawartości C organicznego oraz N ogółem. Na ich zawartość istotny wpływ miał rodzaj gleby oraz rodzaj i dawka stosowanych nawozów. W glebie płowej średnia zawartość związków fenolowych ogółem kształtowała się na poziomie niższym w stosunku do zawartości stwierdzanych w glebie brunatnej. Wieloletnie nawożenie wpłynęło na wzrost zawartości związków fenolowych ogółem w stosunku do wartości uzyskanych w obiektach kontrolnych, co szczególnie uwidoczniło się w glebie pochodzącej z obiektów nawożonych gnojowicą, stosowaną w dawce równoważonej z obornikiem pod względem ilości wprowadzanego węgla organicznego. Udział form fenoli rozpuszczalnych w wodzie w ogólnej zawartości tych związków w glebie płowej kształtował się średnio na poziomie 18.4%, zaś w glebie brunatnej 29.1%.
Rocznik
Strony
104--113
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • University of Warmia and Mazury in Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Poland
autor
  • University of Warmia and Mazury in Olsztyn, Poland
Bibliografia
  • [1]. Ahmad, N. & Bano, A. (2013). Impact of allelopathic potential of maize (Zea mays L.) on physiology and growth of soybean [Glycine max (L.) Merr.], Pakistan Journal of Botany, 45(4), pp. 1187-1192.
  • [2]. Ahn, M., Zimmerman, A.R., Comerford, N.B., Sickman, J.O. & Grunwald, S. (2009). Carbon mineralization and labile organic carbon pools in the sandy soils of a north Florida watershed, Ecosystems, 12, pp. 672-685.
  • [3]. Aoyama, M. & Kumakura, N. (2001). Quantitative and qualitative changes of organic matter in an Ando soil induced by mineral fertilizer and cattle manure applications for 20 years, Soil Science and Plant Nutrition, 47, pp. 241-252.
  • [4]. Barabasz, W. & Vořišek, K. (2002). The biodiversity of microorganisms in soil environments, in: The activity of microorganisms in different environments, Barabasz W. (Ed.), Kraków, AR, pp. 23-34. (in Polish)
  • [5]. Bertholdsson, N.O. (2004). Variation in allelopathic activity over one hundred years of barley selection and breeding, Weed Research, 44, pp. 78-86.
  • [6]. Bertin, C., Yang, X. & Weston, L.A. (2003). The role of root exudates and allelochemicals in the rhizosphere, Plant and Soil, 256, pp. 67-83.
  • [7]. Bielińska, E.J. & Mocek, A. (2003). Enzymatic activity of soil under orchard as an indicator of environmental condition brought about by use of plastics for soil mulch, Zeszyty Problemowe Postępów Nauk Rolniczych, 492, pp. 25-37. (in Polish)
  • [8]. Bonanomi, G., Incerti, G., Antignani, V., Capodilupo, M. & Mazzoleni, S. (2010). Decomposition and nutrient dynamics in mixed litter of Mediterranean species, Plant Soil, 331, pp. 481-496.
  • [9]. Bouhaouel, I., Gfeller, A., Fauconnier, M.-L., Rezgui, S., Amara, H.S. & Jardin, P. (2015). Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates, BioControl, 60, pp. 425-436.
  • [10]. Canals, R.M., Emeterio, L.S. & Peralta, J. (2005). Autotoxicity in Lolium rigidum: analyzing the role of chemically mediated interactions in annual plant populations, Journal of Theoretical Biology, 235, pp. 402-407.
  • [11]. Chantigny, M.H., Rochette, P. & Angers, D.A. (2001). Short-term C and N dynamics in a soil amended with pig slurry and barley straw: a field experiment, Canadian Journal of Soil Science, 81, pp. 131-137.
  • [12]. Djurdjević, L., Dinić, A., Pavlović, P., Mitrović, M., Karadžić, B. & Tešević, V. (2004). Allelopathic potential of Allium ursinum L., Biochemical Systematics and Ecology, 32, pp. 533-544.
  • [13]. Djurdjević, L., Gajić, C., Kostić, O., Jarić, S., Pavlović, C., Mitrović, M. & Pavlović, P. (2012). Seasonal dynamics of allelopathically significant phenolic compounds in globally successful invader Conyza canadensis L. plants and associated sandy soil, Flora, 207, pp. 812-820.
  • [14]. Epstein, E., Taylor, J.M. & Chaney, R.L. (1976). Effects of sewage sludge and sludge compost applied to soil on some soil physical and chemical properties, Journal of Environmental Quality, 5, pp. 422-426.
  • [15]. Fangueiro, D., Coutinho, J., Borges, L., F. Cabral, F. & Vasconcelos, E. (2014). Nitrogen and carbon availability of liquid and solid fractions of pig slurry obtained using different separation technologies, Biology and Fertility of Soils, 50, pp. 333-341.
  • [16]. Furczak, J., Deryło, S. & Szymankiewicz, K. (2001). Microbial activity and content of phenolic compounds in podzolic soil under winter rye cultivated in different systems, Zeszyty Problemowe Postępów Nauk Rolniczych, 478, pp. 135-144.
  • [17]. Gallet, C. & Keller, C. (1999). Phenolic composition of soil solutions: comparative study of lysimeter and centrifuge waters, Soil Biology and Biochemistry, 31, pp. 1151-1160.
  • [18]. Gallet, Ch., Boissier, J-M. & Berlandis, M. (2003). Short-term effects of manure application on soil leachates in a mountain catchment, Agronomie, 23, pp. 335-344.
  • [19]. Gartner, T.B. & Cardon, Z.G. (2004). Decomposition dynamics in mixed-species leaf litter, Oikos, 104 (2), pp. 230-246.
  • [20]. Hanya, T., Matsumoto, G., Nagao, T. & Katase, T. (1976). The presence of p-coumaric and ferulic acids in natural waters and their significance in relation to environmental health, Trace Substances and Environmental Health, 10, pp. 265-269.
  • [21]. Haynes, R.J. & Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review, Nutrient Cycling in Agroecosystems, 51, pp. 123-137.
  • [22]. Hruszka, M. (1982a). Autotoxicity of wheat and field beans grown in monoculture. 1. Pot experiments, Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie, 32, pp. 91-99. (in Polish)
  • [23]. Hruszka, M. (1982b). Autotoxicity of wheat and field beans grown in monoculture. 2. Laboratory studies, Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie, 32, pp. 101-107. (in Polish)
  • [24]. IUSS Working Group WRB. 2014. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps, World Soil Resources Reports No. 106. FAO. Rome. www.fao.org/3/a-i3794e.pdf
  • [25]. Jung, H.G.G., Fahey, G.C. & Merchen, N.R. (1983). Effects of ruminant digestion and metabolism on phenolic monomers of forages. British Journal of Nutrition, 50, pp. 637-651.
  • [26]. Krupa, T. & Latocha, P. (2007). Antioxidant activity and contents of vitamin C and phenolic compounds in fruit of various hardy kiwifruit (Actinidia Lindl.) genotypes, Żywność - Nauka Technologia Jakość 5, pp. 237-244. (in Polish)
  • [27]. Li, Z.H., Wang, Q., Ruan, X., Pan, C.D. & Jiang, D.A. (2010). Phenolics and plant allelopath, Molecules, 15, pp. 8933-8952.
  • [28]. Lowe, L.E. (1993). Total and labile polysacharide analysis of soils, in: Soil sampling and methods of analysis, Carter, M.D. (Ed.), Canadian Society of Soil Science, Lewis Publishers: pp. 373-376.
  • [29]. Malá, J., Cvikrová, M., Hrubcová, M. & Máchová, P. (2013). Influence of vegetation on phenolic acid contents in soil, Journal of Forest Science, 59(7), pp. 288-294.
  • [30]. Martens, D.A. (2002a). Identification of phenolic acid composition of alkali-extracted plants and soils, Soil Science Society of America Journal, 66, pp. 1240-1248.
  • [31]. Martens, D.A. (2002b). Relationship between plant phenolic acids released during soil mineralization and aggregate stabilization, Soil Science Society of America Journal, 66, pp. 1857-1867.
  • [32]. Matsi, T. (2012). Liquid cattle manure application to soil and its effect on crop growth, in: Soil fertility improvement and integrated nutrient management - a global perspective, Whalen, J.K. (Ed.), InTech Europe, pp. 97-118.
  • [33]. Mazzoleni, S., Bonanomi, G., Giannino, F., Rietkerk, M., Dekker, S.C. & Zucconi, F. (2007). Is plant biodiversity driven by decomposition processes? An emerging new theory on plant diversity, Community Ecology, 8(1), pp. 103-109.
  • [34]. Natywa, M., Selwet, M. & Maciejewski, T. (2014). Effect of some agrotechnical factors on the number and activity soil microorganisms, Fragmenta Agronomica, 31(2), pp. 56-63. (in Polish)
  • [35]. Northrup, R.R., Dahlgren, R.A., Aide, T.M. & Zimmerman, J.K. (1999). Effect of plant polyphenols on nutrient cycling and implications for community structure, in: Inderjit, Dakshini, K.M.M., Foy, C.L. (Eds.), Principles and Practices in Plant Ecology, CRC Press, pp. 369-380.
  • [36]. Ostrowska, A., Gawliński, S. & Szczubiałka, Z. (1991). Methods of analysis and assessment of soil and plant properties, Institute of Environmental Protection, pp. 333. (in Polish)
  • [37]. Paul, J.W., Covert, J.A. & Beauchamp, E.G. (1993). Influence of soil temperature and moisture n water-soluble compounds in manured soil, Canadian Journal of Soil Science, 74, pp. 111-114.
  • [38]. Politycka, B. (2007). Substrate reaction and phytotoxicity of root residues of apple trees, Nauka Przyroda Technologie, 1(1), pp. 1-6. (in Polish)
  • [39]. Politycka, B. & Seidler-Łożykowska, K. (2009). Phytotoxicity and phenolic compounds content in soil during long-term cultivation of lemon balm (Melissa officinalis L.) and its effect on herb yield essential oil content, Herba Polonica, 55(3), pp. 133-139.
  • [40]. Rauber, L.P., Piccolla, C.D., Andrade, A.P., Friederichs, A., Mafra, A.L., Corrêa, J.C. & Albuquerque, J.A. (2012). Physical properties and organic carbon content of a Rhodic Kandiudox fertilized with pig slurry and poultry litter, Revista Brasileira de Ciência do Solo, 36, pp. 1323-1332.
  • [41]. Reigosa, M.J. & Pedrol, N. (2002). Allelopathy: from molecules to ecosystems, Science Publishers, Enfield. NH, pp. 316.
  • [42]. Riffaldi, R., Saviozzi, A. & Levi-Minzi, R. (1988). Water extracts of fresh and mature farmyard manure, Biological Wastes, 23, pp. 65-72.
  • [43]. Rimmer, D.L. (2006). Free radicals, antioxidants, and soil organic matter recalcitrance, European Journal of Soil Science, 57, pp. 91-94.
  • [44]. Rimmer, D.L. & Abbott, G.D. (2011). Phenolic compounds in NaOH extracts of UK soils and their contribution to antioxidant capacity, European Journal of Soil Science, 62, pp. 285-294.
  • [45]. Rochette, P., Angers, D.A. & Côté, D. (2000). Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year: I. Carbon dioxide fluxes and microbial biomass carbon, Soil Science Society of America Journal, 64, pp. 1389-1395.
  • [46]. Sánchez, M. & González, J.L. (2005). The fertilizer value of pig slurry. I. Values depending on the type of operation, Bioresource Technology, 96 (10), pp. 1117-1123.
  • [47]. Sądej, W. & Przekwas, K. (2006a). Effects of point pollution sources on nitrogen concentrations in surface waters, Polish Journal of Environmental Studies,15, 5d, Part II: pp. 401-404.
  • [48]. Sądej, W. & Przekwas, K. (2006b). Effect of point pollution sources on nitrogen concentrations in well water, Zeszyty Problemowe Postępów Nauk Rolniczych, 513: pp. 365-372.
  • [49]. Sołtys, D., Dębska, K., Bogatek, R. & Gniazdowska, A. (2010). Plant autotoxicity - an example of allelopathic interaction, Kosmos, 59(3-4), pp. 551-565. (in Polish)
  • [50]. Szwed, A. & Bohacz, J. (2014). Enzymatic activity and certain chemical properties of grey-brown podzolic soil (Haplic Luvisol) amended with compost of tobacco wastes, Archives of Environmental Protection, 40, 3, pp. 61-73.
  • [51]. Thakur, Ch., Deo Mall, I. & Srivastava, V.C. (2013). Effect of hydraulic retention time and filling time on simultaneous biodegradation of phenol, resorcinol and catechol in a sequencing batch reactor, Archives of Environmental Protection, 39, 2, pp. 69-80.
  • [52]. Tiessen, H. & Moir, J.O. (1993). Total and organic carbon, in: Soil sampling and methods of analysis, Carter, M.R. (Ed.), Canadian Society of Soil Science, Lewis Publishers: pp. 187-199.
  • [53]. Vlková, L. & Církva, V. (2005). Chlorinated phenols and methods of their degradation, Chemické Listy, 99, pp. 125-130. (in Czech)
  • [54]. Wang, K., Cai, J., Xie, S., Jia Feng, J. & Wang, T. (2015). Phytoremediation of phenol using Polygonum orientale and its antioxidative response, Archives of Environmental Protection, 41,3, pp. 39-46.
  • [55]. Wardle, D.A., Nilsson, M.C., Zackrisson, O. & Gallet, C. (2003). Determinants of litter mixing effects in a Swedish boreal forest, Soil biology and biochemistry, 35, pp. 827-835.
  • [56]. Wise, A.A. & Kuske, C.R. (2000). Generation of novel bacterial regulatory proteins that detect priority pollutant phenols, Applied Environmental Microbiology, 60(1), pp. 163-169.
  • [57]. Wójcik-Wojtkowiak, D., Politycka, B. & Weyman-Kaczmarkowa, W. (1998). Allelopathy, AR Poznań, pp. 90. (in Polish)
  • [58]. Wu, H., An, M., Liu, D.L., Pratley, J. & Lemerle, D. (2008). Recent advances in wheat allelopathy, in: Allelopathy in Sustainable Agriculture and Forestry, Zeng, R.S., Mallik, A.U., Luo, S.M.(Eds.), Springer Science+Business Media, LLC, pp. 235-254.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80128edc-0f65-42f2-9872-0b65a5095630
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.