Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The asymptotic stability of positive switched linear systems for any switchings is addressed. Simple sufficient conditions for the asymptotic stability of positive switched continuous-time and discrete-time linear systems are established. It is shown that the positive switched continuous-time (discrete-time) system is asymptotically stable for any switchings if the sum of entries of every column of the matrices of subsystems is negative (less than 1)
Słowa kluczowe
Rocznik
Tom
Strony
343--347
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Faculty of Electrical Engineering, Bialystok University of Technology, 45D Wiejska St., 15-351 Bialystok, Poland
Bibliografia
- [1] A. Benzaouia and F. Tadeo, “Stabilization of positive switching linear discrete-time systems”, Int. J. Innovative Computing,Information and Control 6 (4), 2427-2437 (2010).
- [2] S. Bundfuss and M. Dur, “Copositive Lyapunov functions for switched systems over cones”, System and Control Letters 58 (5), 342-345 (2009).
- [3] L. Farina and S. Rinaldi, Positive Linear Systems; Theory andApplications, J. Wiley, New York, 2000.
- [4] E. Fornasini and M.E. Valcher, “Stability and stabilizability criteria for discrete-time positive switched systems”, IEEE Trans. Autom. Control 57 (5), 1208-1221 (2012).
- [5] L. Gurvits, R. Shorten, and O. Mason, “On the stability of switched positive linear systems”, IEEE Trans. Autom. Control. 52, 1099-1103 (2007).
- [6] T. Kaczorek, Positive 1D and 2D Systems, Springer Verlag, London, 2002.
- [7] T. Kaczorek, “Positive switched 2D linear systems described by the Roesser models”, Proc. 19th Int. Symp. Math. Theoryof Network and Systems 1, CD-ROM (2012).
- [8] T. Kaczorek, “Positive switched 2D linear systems described by general model”, Acta Mechanica et Automatica 4, 36-41 (2010).
- [9] T. Kaczorek, “Choice of the forms of Lyapunov functions for 2D Roesser model”, Int. J. Apply. Math. and Comp. Sci. 17, 471-475 (2007).
- [10] D. Liberzon, Switching in System and Control, Birklauser, Berlin, 2003.
- [11] X.W. Liu, “Stability analysis of switched positive systems: a switched linear copositive Lyapunov function method”, IEEETrans. Circ. Sys. II, Express Brief 56, 414-418 (2009).
- [12] X.W. Liu, L. Wang, W.S. Yu, and S.M. Zhong, “Constrained control of positive discrete-time systems with delays”, IEEETrans. Circ. Sys. II, Express Brief 55, 193-197 (2008).
- [13] X.W. Liu and C.Y. Dang, “Stability analysis of positive switched linear systems with delays”, IEEE Trans. Autom. Control 56, 1684-1690 (2011).
- [14] O. Mason and R. Shorten, “On linear copositive Lyapunov functions and the stability of switched positive linear systems”, IEEE Trans. Autom. Control 52, 1346-1349 (2007).
- [15] R.S. Varga, Matrix Interactive Analysis, Springer-Verlag, Berlin, 2002.
- [16] X.D. Zhao, L.X. Zhang, P. Shi, and M. Liu, “Stability of switched positive linear systems with average dwell time switching”, Automatica 48, 1132-1137 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-800f41fb-c786-4cfe-b815-1ca2ef97791f