Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent progress in this field. We also present a numerical optimization framework for layered metamaterials, based on the use of evolutionary algorithms. A measure of similarity obtained using Hölder’s inequality is adapted to construct the overall criterion function. We analyse the influence of surface roughness on the quality of imaging.
Wydawca
Czasopismo
Rocznik
Tom
Strony
355--366
Opis fizyczny
Bibliogr. 37 poz., il., wykr.
Twórcy
autor
- University of Warsaw, Faculty of Physics, 7 Pasteura Str., 02-093 Warsaw, Poland
autor
- University of Warsaw, Faculty of Physics, 7 Pasteura Str., 02-093 Warsaw, Poland
autor
- University of Warsaw, Faculty of Physics, 7 Pasteura Str., 02-093 Warsaw, Poland
Bibliografia
- 1. J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966-3969 (2000).
- 2. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Optics 49, 1747-1762 (2002).
- 3. N. Fang, H. Lee, C. Sun, and X. Zhang. “Sub-diffraction-limited optical imaging with a silver superlens”, Science, 308: 534-537 (2005).
- 4. D. O. Melville and R. J. Blaikie. “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127-2134 (2005).
- 5. J. W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., Englewood, Colorado, 2005.
- 6. P. Yeh, Optical Waves in Layered Media, J. Wiley & Sons, New York, 2005.
- 7. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps”, Appl. Phys. Lett. 72, 1676 (1998).
- 8. N. D. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517-17529 (2009).
- 9. A. Wood, J. B. Pendry, and D. P. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006).
- 10. R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal- dielectric multilayers”, Opto-Electron. Rev. 18, 366-375 (2010).
- 11. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface”, Phys. Rev. B86, 205130 (2012).
- 12. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006).
- 13. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).
- 14. R. Kotyński, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A103, 905-909 (2011).
- 15. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508-523 (2007).
- 16. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’razio, J. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges”, Phys. Rev. A77, 033848 (2008).
- 17. A. M. Conforti, M. Guasoni, and C. D. Angelis, “Subwave-length diffraction management”, Opt. Lett. 33, 2662 (2008).
- 18. J. Wang, H. Yuan Dong, K. Hung Fung, T. Jun Cui, and N. X. Fang, “Subwavelength image manipulation through an oblique layered system”, Opt. Express 19, 16809-16812 (2011).
- 19. C. J. Zapata-Rodriguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices”, Opt. Comm. 285, 3358-3362 (2012).
- 20. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations”, Phys. Rev. A85, 053842 (2012).
- 21. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit”, Opt. Express 14, 8247-8256 (2006).
- 22. G. Castaldi, S. Savoia, V. Galdi, A. Alu, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs”, Phys. Rev. B86, 115123 (2012).
- 23. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, and W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a subwavelength aperture with epsilon-near-zero materials”, Phys. Rev. Lett. 107, 133901 (2011).
- 24. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking”, Phys. Status Solidi RRL 6, 46-48 (2012).
- 25. R. Kotyński, T. J. Antosiewicz, K. Król, and K. Panajotov, “Two-dimensional point spread matrix of layered metal-dielectric imaging elements”, J. Opt. Soc. Am. A28, 111-117 (2011).
- 26. D. Schurig and D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors”, Appl. Phys. Lett. 82, 2215-2217 (2003).
- 27. R. Kotynski and K. Chałasińska-Macukow, “Normalization of correlation filters based on the Hölder’s inequality”, Proc. SPIE. 3490, pp. 195-198, doi: 10.1117/12.308920 (1998).
- 28. P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370-4379 (1972).
- 29. A. Palik (editor), Handbook of Optical Constants of Solids, Academic Press, Orlando, 1998.
- 30. A. Pastuszczak and R. Kotyński, “Optimised low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range”, J. Appl. Phys. 109, 084302 (2011).
- 31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Comm. 181, 687-702 (2010).
- 32. P. Nagpal, N. C. Lindquist, S. -H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials”, Science 325, 594-597, (2009).
- 33. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens”, Appl. Phys. Lett. 96, 043102 (2010).
- 34. M. Schøler and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses”, Microelectron. Eng. 87, 887-889 (2010).
- 35. M. Stolarek, P. Wróbel, T. Stefaniuk, M. Wlazło, A. Pastuszczak, and R. Kotyński, “Spatial filtering with rough metal-dielectric layered metamaterials”, Phot. Lett. of Poland 5, 60-62 (2013).
- 36. R. Kotynski, H. Baghdasaryan, T. Stefaniuk, A. Pastuszczak, M. Marciniak, A. Lavrinenko, K. Panajotov, and T. Szoplik, “Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies”, Opto-Electron. Rev. 18, 446-457 (2010).
- 37. S. Huang, H. Wang, K. -H. Ding, and L. Tsang, “Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface”, Opt. Lett. 37, 1295-1297 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-800e3b81-f312-42e9-9140-5adcd9721bb0