PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Engineering the point spread function of layered metamaterials

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Layered metal-dielectric metamaterials have filtering properties both in the frequency domain and in the spatial frequency domain. Engineering their spatial filtering response is a way of designing structures with specific diffraction properties for such applications as sub-diffraction imaging, supercollimation, or optical signal processing at the nanoscale. In this paper we review the recent progress in this field. We also present a numerical optimization framework for layered metamaterials, based on the use of evolutionary algorithms. A measure of similarity obtained using Hölder’s inequality is adapted to construct the overall criterion function. We analyse the influence of surface roughness on the quality of imaging.
Twórcy
  • University of Warsaw, Faculty of Physics, 7 Pasteura Str., 02-093 Warsaw, Poland
autor
  • University of Warsaw, Faculty of Physics, 7 Pasteura Str., 02-093 Warsaw, Poland
autor
  • University of Warsaw, Faculty of Physics, 7 Pasteura Str., 02-093 Warsaw, Poland
Bibliografia
  • 1. J. B. Pendry, “Negative refraction makes a perfect lens”, Phys. Rev. Lett. 85, 3966-3969 (2000).
  • 2. S. A. Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens”, J. Mod. Optics 49, 1747-1762 (2002).
  • 3. N. Fang, H. Lee, C. Sun, and X. Zhang. “Sub-diffraction-limited optical imaging with a silver superlens”, Science, 308: 534-537 (2005).
  • 4. D. O. Melville and R. J. Blaikie. “Super-resolution imaging through a planar silver layer”, Opt. Express 13, 2127-2134 (2005).
  • 5. J. W. Goodman, Introduction to Fourier Optics, Roberts & Co Publ., 3rd ed., Englewood, Colorado, 2005.
  • 6. P. Yeh, Optical Waves in Layered Media, J. Wiley & Sons, New York, 2005.
  • 7. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps”, Appl. Phys. Lett. 72, 1676 (1998).
  • 8. N. D. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: Application to super-resolution”, Opt. Express 17, 17517-17529 (2009).
  • 9. A. Wood, J. B. Pendry, and D. P. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system”, Phys. Rev. B74, 115116 (2006).
  • 10. R. Kotyński, “Fourier optics approach to imaging with sub-wavelength resolution through metal- dielectric multilayers”, Opto-Electron. Rev. 18, 366-375 (2010).
  • 11. C. Guclu, S. Campione, and F. Capolino, “Hyperbolic metamaterial as super absorber for scattered fields generated at its surface”, Phys. Rev. B86, 205130 (2012).
  • 12. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime”, Phys. Rev. B73, 113110 (2006).
  • 13. X. Li, S. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies”, Phys. Rev. B75, 045103 (2007).
  • 14. R. Kotyński, T. Stefaniuk, and A. Pastuszczak, “Sub-wavelength diffraction-free imaging with low-loss metal-dielectric multilayers”, Appl. Phys. A103, 905-909 (2011).
  • 15. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallo-dielectric stacks”, Opt. Express 15, 508-523 (2007).
  • 16. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’razio, J. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-ir ranges”, Phys. Rev. A77, 033848 (2008).
  • 17. A. M. Conforti, M. Guasoni, and C. D. Angelis, “Subwave-length diffraction management”, Opt. Lett. 33, 2662 (2008).
  • 18. J. Wang, H. Yuan Dong, K. Hung Fung, T. Jun Cui, and N. X. Fang, “Subwavelength image manipulation through an oblique layered system”, Opt. Express 19, 16809-16812 (2011).
  • 19. C. J. Zapata-Rodriguez, D. Pastor, M. T. Caballero, and J. J. Miret, “Diffraction-managed superlensing using plasmonic lattices”, Opt. Comm. 285, 3358-3362 (2012).
  • 20. O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations”, Phys. Rev. A85, 053842 (2012).
  • 21. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit”, Opt. Express 14, 8247-8256 (2006).
  • 22. G. Castaldi, S. Savoia, V. Galdi, A. Alu, and N. Engheta, “Analytical study of subwavelength imaging by uniaxial epsilon-near-zero metamaterial slabs”, Phys. Rev. B86, 115123 (2012).
  • 23. D. C. Adams, S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, and W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, “Funneling Light through a subwavelength aperture with epsilon-near-zero materials”, Phys. Rev. Lett. 107, 133901 (2011).
  • 24. D. S. Filonov, A. P. Slobozhanyuk, P. A. Belov, and Y. S. Kivshar, “Double-shell metamaterial coatings for plasmonic cloaking”, Phys. Status Solidi RRL 6, 46-48 (2012).
  • 25. R. Kotyński, T. J. Antosiewicz, K. Król, and K. Panajotov, “Two-dimensional point spread matrix of layered metal-dielectric imaging elements”, J. Opt. Soc. Am. A28, 111-117 (2011).
  • 26. D. Schurig and D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors”, Appl. Phys. Lett. 82, 2215-2217 (2003).
  • 27. R. Kotynski and K. Chałasińska-Macukow, “Normalization of correlation filters based on the Hölder’s inequality”, Proc. SPIE. 3490, pp. 195-198, doi: 10.1117/12.308920 (1998).
  • 28. P. Johnson and R. Christy, “Optical constants of the noble metals”, Phys. Rev. B6, 4370-4379 (1972).
  • 29. A. Palik (editor), Handbook of Optical Constants of Solids, Academic Press, Orlando, 1998.
  • 30. A. Pastuszczak and R. Kotyński, “Optimised low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range”, J. Appl. Phys. 109, 084302 (2011).
  • 31. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method”, Comput. Phys. Comm. 181, 687-702 (2010).
  • 32. P. Nagpal, N. C. Lindquist, S. -H. Oh, and D. J. Norris, “Ultrasmooth Patterned Metals for Plasmonics and Metamaterials”, Science 325, 594-597, (2009).
  • 33. P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, “A smooth optical superlens”, Appl. Phys. Lett. 96, 043102 (2010).
  • 34. M. Schøler and R. J. Blaikie, “Resonant surface roughness interactions in planar superlenses”, Microelectron. Eng. 87, 887-889 (2010).
  • 35. M. Stolarek, P. Wróbel, T. Stefaniuk, M. Wlazło, A. Pastuszczak, and R. Kotyński, “Spatial filtering with rough metal-dielectric layered metamaterials”, Phot. Lett. of Poland 5, 60-62 (2013).
  • 36. R. Kotynski, H. Baghdasaryan, T. Stefaniuk, A. Pastuszczak, M. Marciniak, A. Lavrinenko, K. Panajotov, and T. Szoplik, “Sensitivity of imaging properties of metal-dielectric layered flat lens to fabrication inaccuracies”, Opto-Electron. Rev. 18, 446-457 (2010).
  • 37. S. Huang, H. Wang, K. -H. Ding, and L. Tsang, “Subwavelength imaging enhancement through a three-dimensional plasmon superlens with rough surface”, Opt. Lett. 37, 1295-1297 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-800e3b81-f312-42e9-9140-5adcd9721bb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.