PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the carbon dioxide uptake efficiency of activated carbons using a secondary activation with potassium hydroxide

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Secondary activation of commercial activated carbon (AC) ORGANOSORB 10-CO was carried out at 600, 700 and 800°C with mass ratios of potassium to AC (K/AC) in range 1–3. Crucial samples have shown following CO2  uptakes and SSA – 3.90 mmol/g and 1225 m2/g, 4.54 mmol/g and 1546 m2/g, 4.28 and 1717 m2/g for pristine material and samples obtained at 700°C with K/AC = 2 and at 800°C with K/AC = 3 respectively. Last sample also indicated significant mesopore volume increase in diameter range 2–5 nm, from 0.11 to 0.24 cm3/g. CO2 uptake increase was explained by formation of micropores up to diameter of 0.8 nm, which distribution was established from CO2  sorption using DFT. Surface chemistry of all samples has not changed during modification, what was proven by XPS. Moreover, deeper incorporation of potassium ions into graphite at higher temperatures was observed as confirmed with EDS, XPS and XRD.
Słowa kluczowe
Rocznik
Strony
87--94
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pulaskiego 10, 70-322 Szczecin, Poland
Bibliografia
  • 1. NASA’s Goddard Institute for Space Studies. Retrieved June 29, 2018, from https://climate.nasa.gov/vital-signs/global--temperature/
  • 2. Pfeffer, W.T., Harper, J.T. & O’Neel, S. (2008). Kinematic constraints on glacier contributions to 21st-century sea-levelrise. Science 321 1340–1343. DOI: 10.1126/science.1159099.
  • 3. Wallace, J.M., & Hobbs, P.V. (2006). Atmospheric Science An Introductory Survey (2nd ed.). Seattle, USA: Elsevier
  • 4. Etheridge, D.M., Steele, L.P., Langenfelds, R.L., Francey, R.J., Barnola, J.M. & Morgan, V.I. (1996). Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic and firn. J. Geophys. Res.-Atmos. 101 4115–4128. DOI: https://doi.org/10.1029/95JD03410.
  • 5. Tans, P. & Keeling, R. Trends in Atmospheric Carbon Dioxide. Retrieved June 29, 2018, from https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html
  • 6. Gęsikiewicz-Puchalska, A., Zgrzebnicki, M., Michalkiewicz, B., Narkiewicz, U., Morawski, A.W. & Wrobel, R.J. (2017). Improvement of CO2 uptake of activated carbons by treatment with mineral acids. Chem. Eng. J. 309 159–171. DOI: https://doi.org/10.1016/j.cej.2016.10.005.
  • 7. Harald, D., Frisvold, P., Gunningham, N., Jaccard, M., Langhelle, O., Meadowcroft, J., Praetorius, B., Scrase, I., Sharp, J., Sinclair, D., Stephens, J.C., Tjernshaugen, A., Vergragt, P.J., von Stechow, C. & Watson, J. (2009). Caching the Carbon, the Politics and Policy of Carbon Capture and Storage. Chelteham: Edward Elgar Publishing Limited.
  • 8. Młodzik, J., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Activated Carbons from Molasses as CO2 Sorbents. Acta Phys. Pol. A. 129, 402–405. DOI: 10.12693/APhysPolA.129.402.
  • 9. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R., Gęsikiewicz-Puchalska, A. & Michalkiewicz, B. (2016). Modification of Commercial Activated Carbons for CO2 Adsorption. Acta Phys. Pol. A. 129, 394–401. DOI: 10.12693/APhysPolA.129.394.
  • 10. Glonek, K., Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J. & Michalkiewicz, B. (2016). Preparation of Activated Carbon from Beet Molasses and TiO2 as the Adsorption of CO2. Acta Phys. Pol. A. 129 158–161. DOI: 10.12693/APhysPolA.129.158.
  • 11. Kapica-Kozar, J., Kusiak-Nejman, E., Wanag, A., Kowalczyk, Ł., Wrobel, R.J., Mozia, S. & Morawski, A.W. (2015). Alkali-treated titanium dioxide as adsorbent for CO2 capture from air. Micropor. Mesopor. Mat. 202, 241–249. DOI: https://doi.org/10.1016/j.micromeso.2014.10.013.
  • 12. Kapica-Kozar, J., Piróg, E., Wrobel, R.J., Mozia, S., Kusiak-Nejman, E., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2016). TiO2/titanate composite nanorod obtained from various alkali solutions as CO2 sorbents from exhaust gases. Micropor. Mesopor. Mat. 231, 117–127. DOI: https://doi.org/10.1016/j.micromeso.2016.05.024.
  • 13. Kapica-Kozar, J., Piróg, E., Kusiak-Nejman, E., Wrobel, R.J., Gęsikiewicz-Puchalska, A., Morawski, A.W., Narkiewicz, U. & Michalkiewicz, B. (2017). Titanium dioxide modified with various amines used as sorbents of carbon dioxide. New J. Chem. 41(4) 1549–1557. DOI: 10.1039/C6NJ02808J.
  • 14. Kapica-Kozar, J., Michalkiewicz, B., Wrobel, R.J., Mozia, S., Piróg, E., Kusiak-Nejman, E., Serafi n, J., Morawski A.W. & Narkiewicz, U. (2017). Adsorption of carbon dioxide on TEPAmodified TiO2/titanate composite nanorods. 41, 7870–7885. DOI: 10.1039/C7NJ01549F.
  • 15. Figueiredo, J.L. (2013). Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A. 1 9351–9364. DOI: 10.1039/C3TA10876G.
  • 16. Serafin, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2017). Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 18 73–79. DOI: https://doi.org/10.1016/j.jcou.2017.01.006.
  • 17. Danish, M. & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sust. Energ. Rev. 87 1–21. DOI: https://doi.org/10.1016/j.rser.2018.02.003.
  • 18. Wiśniewska, M., Nowicki, P., Nosal-Wiercińska, A., Pietrzak, R., Szewczuk-Karpisz, K., Ostolska, I. & Sternik, D. (2017). Adsorption of poly(acrylic acid) on the surface of microporous activated carbon obtained from cherry stones. Colloid Surface A. 514, 137–145. DOI: https://doi.org/10.1016/j.colsurfa.2016.11.053.
  • 19. Popa, N. & Visa, M. (2017). The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Adv. Powder Technol. 28(8) 1866–1876. DOI: https://doi.org/10.1016/j.apt.2017.04.014.
  • 20. Qu, S., Wan, J., Dai, C., Jin, T. & Ma, F. (2018). Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf. J. Alloy Compd. 751 107–116. DOI: https://doi.org/10.1016/j.jallcom.2018.04.123.
  • 21. Górka, J. & Jaroniec, M. (2011). Hierarchically porous phenolic resin based carbons obtained by block copolymer colloidal silica templating and post synthesis activation with carbon dioxide and water vapor. Carbon 49 154–160. DOI: https://doi.org/10.1016/j.carbon.2010.08.055.
  • 22. Meng, L.Y. & Park, S.J. (2014). Effect of ZnCl2 activation on CO2 adsorption of N-doped nanoporous carbons from polypyrrole. J. Solid State Chem. 281 90–94. DOI: https://doi. org/10.1016/j.jssc.2014.06.005.
  • 23. Sreńscek-Nazzal, J., Narkiewicz, U., Morawski, A.W., Wrobel, R.J. & Michalkiewicz, B. (2016). The increase of the microporosity and CO2 adsorption capacity of the commercial activated carbon CWZ-22 by KOH treatment. In R.S. Dariani (Ed), Microporous and mesoporous materials (2–19). Rijeka: InTech. DOI: 10.5772/63672.
  • 24. Arami-Niya, A., Daud, W.M.A.W. & Mjalli, F.S. (2011). Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chem. Eng. Res. Des. 89(6) 657–664. DOI: https://doi.org/10.1016/j.cherd.2010.10.003.
  • 25. Mitra, S. (2016). U.S. Patent No. 9938152. Washington, D.C.: U.S. Patent and Trademark Office.
  • 26. Guskos, N., Typek, J., Maryniak, M., Narkiewicz, U., Kucharewicz, I. & Wróbel, R. (2005). FMR study of agglomerated nanoparticles in a Fe3C/C system. Mater. Sci. Poland 23(4) 102–106.
  • 27. Wrobel, R.J., Hełminiak, A., Arabczyk, W. & Narkiewicz, U. (2014). Studies on the Kinetics of Carbon Deposit Formation on Nanocrystalline Iron Stabilized with Structural Promoters. J. Phys. Chem. C. 118(28) 15434–15439. DOI: 10.1021/jp4108377.
  • 28. Yu, K., Li, J., Qi, H. & Liang, Ce. (2018). High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method. Diam. Relat. Mater. 86 139–145. DOI: https://doi.org/10.1016/j.diamond.2018.04.019.
  • 29. Młodzik, J., Wróblewska, A., Makuch, E., Wróbel, R.J. & Michalkiewicz, B. (2016). Fe/EuroPh catalyst for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal. Today 268 111–120. DOI: https://doi.org/10.1016/j.cattod.2015.11.010.
  • 30. Glonek, K., Wróblewska, A., Makuch, E., Ulejczyk, B., Krawczyk, K., Wróbel, R.J., Koren, Z.C. & Michalkiewicz, B. (2017). Oxidation of limonene using activated carbon modified in dielectric barrier discharge plasma. Appl. Surf. Sci. 420 873–881. DOI: https://doi.org/10.1016/j.apsusc.2017.05.136.
  • 31. Pełech, R., Milchert, E. & Wróbel, R. (2006). Adsorption dynamics of chlorinated hydrocarbons from multi-componentaqueous solution onto activated carbon. J. Hazard. Mater. 137 1479–1487. DOI: https://doi.org/10.1016/j.jhazmat.2006.04.023.
  • 32. Zgrzebnicki, M., Krauze, N., Gęsikiewicz-Puchalska, A., Kapica-Kozar, J., Piróg, E., Jędrzejewska, A., Michalkiewicz, B., Narkiewicz, U., Morawski A.W. & Wrobel, R.J. (2017). Impact on CO2 Uptake of MWCNT after Acid Treatment Study. J. Nanomater. 2017. DOI: https://doi.org/10.1155/2017/7359591.
  • 33. Tiwari, D., Bhunia, H. & Bajpai, P.K. (2018). Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies. Appl. Surf. Science 439 760–771. DOI: https://doi.org/10.1016/j.apsusc.2017.12.203.
  • 34. Ludwinowicz, J. & Jaroniec, M. (2015). Effect of activation agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. Carbon 94 673–679. DOI: https://doi.org/10.1016/j.carbon.2015.07.052.
  • 35. Presser, V., McDonough, J., Yeon, S.H. & Gogotsi, Y. (2011). Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy Environ. Sci. 4 3059–3066. DOI: 10.1039/C1EE01176F.
  • 36. Wrobel, R.J. & Becker, S. (2010). Carbon and sulphur on Pd(111) and Pt(111): Experimental problems during cleaning of the substrates and impact of sulphur on the redox properties of CeOx in the CeOx/Pt(111) system. Vacuum 84(11) 1258–1265. DOI: https://doi.org/10.1016/j.vacuum.2010.01.056.
  • 37. Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A. & Orfao, J.J.M. (1999). Modification of the surface chemistry of activated carbons. Carbon 37 1379–1389. DOI: https://doi.org/10.1016/S0008-6223(98)00333-9.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80091b13-e5f1-461e-b78b-801738873367
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.