PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on optimization method of flotation kinetic model based on molybdenite particle size effect

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation kinetic models can be applied to describe the flotation process and to predict mineral recoveries. However, the size composition of the target minerals in the feed ore fluctuates considerably, resulting in insufficient accuracy with flotation kinetic models. There have been many studies that focus on the investigation of flotation kinetics with different particle sizes, while the optimization methods for flotation kinetic models based on particle size effects have not been reported. In this paper, flotation tests, optical microscope observations, and particle size analysis were used to identify the reasons for the decrease in accuracy of the flotation kinetic model due to changes in the composition of molybdenite particle size. Additionally, an optimization method for the flotation kinetic model was developed based on the particle size effect. The test results show that the accuracy of the flotation kinetic model for fixed particle size minerals is very high, but the predicted results for flotation recoveries of different particle size mineral mixtures have large deviations. The poor accuracy might be due to the autogenous carrier effect caused by the particle size composition fluctuating considerably. The optimization method for the flotation kinetic model is based on the particle size effect. The model can accurately describe the flotation process of molybdenite with different size compositions of molybdenite and predict the flotation recovery of molybdenite.
Rocznik
Strony
art. no. 163004
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • Oulu Ming School, University of Oulu, Oulu, F1-90014, Finland
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • School of Resource Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Bibliografia
  • ABKHOSHK, E., KOR, M., REZAI, B., 2010. A study on the effect of particle size on coal flotation kinetics using fuzzy logic. Expert Syst. Appl. 37(7), 5201-5207.
  • BU, X. N., XIE, G. Y., PENG, Y. L., 2017. Interaction of fine, medium, and coarse particles in coal fines flotation. Energy Sources Part A-Recovery Utilization and Environmental Effects. 39(12), 1276-1282.
  • CHENG, G., LIU, J. T., CAO, Y. J., WANG, Y. T., LI, S. L., YUAN, C., 2013. Comparison of the Flotation Performance between Wide and Narrow Particle Size Ranges of Coal. Int. J. Coal. Prep. Util. 33(6), 290-299.
  • FENG, Q. C., YANG, W. H., WEN, S. M., WANG, H., ZHAO, W. J., HAN, G., 2022. Flotation of copper oxide minerals: A review. Int. J. Min. Sci. Technol. https://doi.org/10.1016/j.ijmst.2022.09.011.
  • GHARAI, M., VENUGOPAL, R., 2016. Modeling of Flotation Process-An Overview of Different Approaches. Miner. Process. Extr. Metall. Rev. 37(2), 120-133. https://doi.org/10.1080/08827508.2015.1115991.
  • HUANG, G., XU, H. X., MA, L. Q., WU, L., 2018. Improving Coal Flotation by Classified Conditioning. Int. J. Coal. Prep. Util. 38(7), 361-373.
  • HUANG, X., ZHANG, S., LIN, X. C., WANG, Y. G., XU, M., 2013. Deoxygenation effect on hydrophilicity changes of Shengli lignite during pressurized pyrolysis at low temperature. Journal of Fuel Chemistry and Technology. 41(12), 1409-1414.
  • JOVICA, S., SANJA, M., 2018. The effect of particle size on coal flotation kinetics: A review. Physicochem. Probl. Miner. Process. 54(4), 1172-1190.
  • LUO, C., HE, Y. Q., BU, X. N., XIE, W. N., WANG, H. F., WANG, S., 2015. Improvement of Classical Dynamic Model for Flotation of Narrow Particle slime. Journal of China University of Mining and Technology. 44(3), 477-482. https://doi.org/10.13247/j.cnki.jcumt.000332. (in Chinese).
  • LIU, S. N., 2008. 57% molybdenum concentrate technology research and practice. Non-ferrous Metals (Mineral Processing). (4), 6-9, 14 (in Chinese).
  • LI, D., YIN, W. Z., LIU, Q., CAO, S. H., SUN, Q. Y., ZHAO, C., YAO, J., 2017. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner. Eng. 114, 74-81.
  • LIU, A., FAN, M. Q., FAN, P. P., 2014. Interaction mechanism of miscible DDA-Kerosene and fine quartz and its effect on the reverse flotation of magnetic separation concentrate. Miner. Eng. 65(15), 41-50.
  • NI, C., XIE, G. Y., JIN, M. G., PENG, Y. L., XIA, W. C., 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder Technol. 292, 210-216.
  • POLAT, M., POLAT, H., CHANDER, S., 2003. Physical and chemical interactions in coal flotation. Int. J. Miner. Process. 72(1-4), 199-213.
  • QIU, G. Z., HU, Y. H., WANG, D. Z., 1994. Study on flotation mechanism of Micro-fine hematite. Nonferrous Metals. (04), 23-28. (in Chinese).
  • RAHMAN, R. M., ATA, S., JAMESON, G. J., 2012. The effect of flotation variables on the recovery of different particle size fractions in the froth and the pulp. Int. J. Miner. Process. 106-109, 70-77.
  • WANG, X. X., ZHOU, S. Q., BU, X. N., NI, C., XIE, G. Y., PENG, Y. L., 2020. Investigation on interaction behavior between coarse and fine particles in the coal flotation using focused beam reflectance measurement (FBRM) and particle video microscope (PVM). Sep. Sci. Technol. 56(8), 1418-1430.
  • XU, C. H., GUI, W. H., YANG, C. H., ZHU, H. Q., LIN, Y. Q., SHI, C., 2012. Flotation process fault detection using output PDF of bubble size distribution. Miner. Eng. 26, 5-12.
  • XU, D., AMETOV, I., GRANO, S. R., 2013. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation. Miner. Eng. 39, 89-98.
  • YANG, C. G., FENG, A. A., ZHU, J. B., YIN, J. Q., 2020. Study on fine coal flotation based on the mathematical model. Coal preparation Technology. (3), 12-15 (in Chinese).
  • YUAN, L. X., LI, J., LI, Y., 2010. Study on Dissemination Characteristics of Scaly Molybdenite and Prediction of Their Effects on Mineral Processing Results. Mining and Metallurgical Engineering. 30(4), 50-53 (in Chinese).
  • ZHANG, Z. J., LIU, J. T., XU, Z. Q., MA, L. Q., 2013. Effects of clay and calcium ions on coal flotation. Int. J. Min. Sci. Technol. 23(5), 689-692.
  • ZHANG, X. L., HAN, Y. X., GAO, P., LI, Y. J., SUN, Y. S., 2019. Effects of particle size and ferrichydroxo complex produced by different grinding media on the flotation kinetics of pyrite. Powder Technol. 360, 1028-1036.
  • ZHANG, X. F., HU, Y. H., SUN, W., XU, L. H., 2017. The Effect of Polystyrene on the Carrier Flotation of Fine Smithsonite. Minerals. 7(4). https://doi.org/10.3390/min7040052.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-800394b3-2dbc-476e-899f-e4969ccfeb3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.