Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cyclic scheduling concerns both kinds of questions following the deductive and inductive ways of reasoning. First class of problems concentrates on rules aimed at resources assignment as to minimize a given objective function, e.g. the cycle time, the flow time of a job. In turn, the second class focuses on a system structure designing as to guarantee the assumed qualitative and/or quantitative measures of objective functions can be achieved. The third class of problems can be seen, however as integration of earlier mentioned, i.e. treating design and scheduling or design and planning simultaneously. The complexity of these problems stems from the fact that system configuration must be determined for the purpose of processes scheduling, yet scheduling must be done to devise the system configuration. In that context, the contribution provides discussion of some Diophantine problems solubility issues, taking into.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
11--25
Opis fizyczny
Bibliogr. 18 poz., fig.
Twórcy
autor
- Koszalin University of Technology, Dept. of Computer Science and Management, 75-354 Koszalin, Śniadeckich 2, Poland
autor
autor
- Warsaw University of Technology, Faculty of Management, Dept. of Business Informatics, 02-524 Warszawa, Narbutta 85
Bibliografia
- [1] BACH I., BOCEWICZ G., BANASZAK Z.: Constraint programming approach to time-window and multi-resource-constrained projects portfolio prototyping. In: Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2008, N.T. Nguyen et al. (Eds.), Lecture Notes in Artificial Intelligence 5027, Springer-Verlag, Berlin, Heidelberg, 2008, 767–776.
- [2] BOCEWICZ G., BANASZAK Z., WÓJCIK R.: Design of admissible schedules for AGV systems with constraints: a logic-algebraic approach. In: Agent and Multi-Agent Systems: Technologies and Applications, Nguyen N.T., Grzech A., Howlett R.J., Jain L.C. (Eds.), Lecture Notes in Artificial Intelligence 4496, Springer-Verlag, Berlin, Heidelberg, 2007, 578-587.
- [3] BARTÁK R.: Incomplete Depth-First Search Techniques: A Short Survey. Proceedings of the 6th Workshop on Constraint Programming for Decision and Control, Ed. Figwer J., 2009, 7-14.
- [4] BIRGER RAA, EL-HOUSSAINE AGHEZZAF, WOUT DULLAERT: Cyclic scheduling of multiple tours with multiple frequencies for a single vehicle. International Journal of Logistics Systems and Management 2009 - Vol. 5, No.3/4 pp. 214 - 227
- [5] CAI X., LI K.N.: A genetic algorithm for scheduling staff of mixed skills under multi-criteria. European Journal of Operational research, 125, 2000, 359-369.
- [6] DAVIS, M.: Hilbert's Tenth Problem is Unsolvable. Amer. Math. Monthly 80, 1973, 233-269.
- [7] ERNST A.T., JIANG H., KRISHNAMOORTHY M., OWENS B., SIER D.: An annotated bibliography of personnel scheduling and rostering. Annals of Operations Research, 127, 2009, 21-144.
- [8] GAUJAL B., JAFARI M., BAYKAL-GURSOY M., ALPAN G.: Allocation sequences of two processes sharing a resource. IEEE Trans. on Robotics and Automation, Vol.11, No. 5, 1995, 748-353.
- [9] GUY R. K.: Diophantine Equations. Ch. D in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, 1994, 139-198.
- [10] JONES, J. P. AND MATIYASEVICH, YU. V.: Exponential Diophantine Representation of Recursively Enumerable Sets. Proceedings of the Herbrand Symposium, Marseilles, 1981. Amsterdam, Netherlands: North-Holland, 1982, 159-177.
- [11] PINEDO M. L.: Planning and scheduling in manufacturing and services. Springer-Verlag, New York 2005
- [12] POLAK M., MAJDZIK P., BANASZAK Z., WÓJCIK R.: The performance evaluation tool for automated prototyping of concurrent cyclic processes. Fundamenta Informatice, April, 2004, Editor-in-Chief, A. Skowron, ISO Press, Vol. 60, No.1-4, 2004, pp.269-289.
- [13] SCHUTLE H., SMOLKA G., WURTZ J.: Finite Domain Constraint Programming in Oz. German Research Center for Artificial Inteligence, Germany, D-66123 Saarbrucken, 1998.
- [14] SPRINDZUK, VLADIMIR G.: Classical Diophantine equations. Lecture Notes in Mathematics, 1559. Springer-Verlag, Berlin, 1993. 228 pp. ISBN 3-540-57359-3.
- [15] SMART NIGIEL P.: The Algorithmic Resolution of Diophantine Equations. London Mathematical Society Student Text, 41. Cambridge University Press, Cambridge, 1998.
- [16] SOON-KI HEO, KYU-HWANG LEE, HO-KYUNG LEE, IN-BEUM LEE, AND JIN HYUN PARK: A New Algorithm for Cyclic Scheduling and Design of Multipurpose Batch Plants. Ind. Eng. Chem. Res., 2003, 42 (4), 836–846.
- [17] TAN B., KARABATI S.: Stochastic Cyclic Scheduling Problem In Synchronous Assembly And Production Lines. Journal of the Operational Research Society, Volume 49, Number 11, 1 November 1998 , 1173-1187.
- [18] VON KAMPMEYER T.: Cyclic scheduling problems, Ph.D. Dissertation, Fachbereich Mathematik/Informatik, Universität Osnabrück, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-80012f6c-9377-4687-aff7-c2c780497536
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.