PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating the tolerance of chickpea (Cicer arietinum L.) genotypes to salinity stress based on a complex of morpho-physiological and yielding traits

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salinity is one of the most significant abiotic stress factors influencing crop production, especially in arid and semi-arid regions. Plants’ response to salinity stress depends on the cultivated genotype. A pot experiment was conducted to study the impact of two concentrations of sodium chloride (4 and 6 dS∙m-1) on some physiological and production traits of 58 chickpea genotypes. A genetic variation in the response of the investigated chickpea genotypes for NaCl-induced salinity stress was noted. Studied morphophysiological traits and yield components were affected under salt stress in all genotypes tested. Plant height was observed to have the lowest rate of reduction (32%, 48%) at 4 and 6 dS∙m-1, respectively. Leaf stomatal conductance decreased as salinity increased. Salinity stress conditions affected all studied yield components, but there was a genetic variation in the response of the studied genotypes. Under no stress conditions and compared to the other genotypes, the number of pods was significantly higher in BG362 genotype. The seed number was significantly higher in ILC9076 genotype. The 100 seed weight was significantly higher in the genotype ILC2664. The mean seed yield was significantly higher in ILC9354 and the harvest index was significantly higher in ILC8617. In general, salinity stress caused the reduction of all parameters. We assume that the assessment of tolerance of chickpea (Cicer arietinum L.) genotypes to salinity stress should be based on a complex of morpho-physiological traits and analysis of yield complement.
Słowa kluczowe
Wydawca
Rocznik
Strony
119--129
Opis fizyczny
Bibliogr. 53 poz., tab.
Twórcy
  • Aleppo University, Faculty of Agriculture, Department of Field Crops, Aleppo, Syria
autor
  • University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Department of Applied Plant Biology, Böszörményi Rd, 138/B, 4032, Debrecen, Hungary
Bibliografia
  • ACOSTA-MOTOS J.R., DIAZ-VIVANCOS P., ÁLVAREZ S., FERNÁNDEZ-GARCÍA N., SANCHEZ-BLANCO M.J., HERNÁNDEZ J.A. 2015. Physiological and biochemical mechanisms of the ornamental Eugenia myrtifolia L. plants for coping with NaCl stress and recovery. Planta. Vol. 242 (4) p. 829–846. DOI 10.1007/s00425-015-2315-3.
  • AL-MUTAWA M. 2003. The effect of salinity on germination and seedling growth of chickpea (Cicer arietinum L.) genotypes. International Journal of Agriculture and Biology. Vol. 5(3) p. 226–229.
  • ASHRAF M. 2004. Some important physiological selection criteria for salt tolerance in plants. Flora-Morphology, Distribution, Functional Ecology of Plants. Vol. 199(5) p. 361–376. DOI 10.1078/0367-2530-00165.
  • ASHRAF M.H.P.J.C., HARRS P.J. 2013. Photosynthesis under stressful environments: An overview. Photosynthetica. Vol. 51(2) p. 163–190. DOI 10.1007/s11099-013-0021-6.
  • ATIENO J., LI Y., LANGRIDGE P., DOWLING K., BRIEN C., BERGER B., SUTTON T. 2017. Exploring genetic variation for salinity tolerance in chickpea using image-based phenotyping. Scientific Reports. Vol. 7(1) p. 1–11. DOI 10.1038/s41598-017-01211-7.
  • BHATTARAI S., BISWAS D., FU Y.B., BILIGETU B. 2020. Morphological, physiological, and genetic responses to salt stress in alfalfa: A review. Agronomy. Vol. 10(4), 577. DOI 10.3390/agron-omy10040577.
  • CHAVES M., FLEXAS J., PINHEIRO C. 2009. Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany. Vol. 103 p. 551–560. DOI 10.1093/aob/mcn125.
  • DAVIES W.J., KUDOYAROVA G., HARTUNG W. 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. Journal of Plant Growth Regulation. Vol. 24(4) p. 285–295. DOI 10.1007/s00344-005-0103-1.
  • DHINGRA H.R., VARGHESE T.M. 1993. Flowering and male reproductive functions of chickpea (Cicer arietinum L.) genotypes as affected by salinity. Biologia plantarum. Vol. 35(3) p. 447–452. DOI 10.1007/BF02928525.
  • EPITALAWAGE N., EGGENBERG P., STRASSER R.J. 2003. Use of fast chlorophyll a fluorescence technique in detecting drought and salinity tolerant chickpea (Ci1cer arietinum L.) varieties. Archives Des Sciences. Vol. 56(2) p. 79–93.
  • FAOSTAT 2016. FAOSTAT statistics database [online]. Rome. FAO. [Access 08.06.2022]. Available at: https://www.fao.org/faostat/en/#data/QCL
  • FLOWERS T.J., GAUR P.M., GOWDA C.L., KRISHNAMURTHY L., SAMINENI S., SIDDIQUE K.H., COLMER T.D. 2010. Salt sensitivity in chickpea. Plant, Cell & Environment. Vol. 33(4) p. 490–509. DOI 10.1111/j.1365-3040.2009.02051.x.
  • FRICKE W., AKHIYAROVA G., VESELOV D., KUDOYAROVA G. 2004. Rapid and tissue specific changes in ABA and in growth rate in response to salinity in barley leaves. Journal of Experimental Botany. Vol. 55 (399) p. 1115–1123. DOI 10.1093/jxb/erh117.
  • GARG N., SINGLA N. 2004. Growth, photosynthesis, nodule nitrogen and carbon fixation in the chickpea cultivars under salt stress. Brazilian Journal of Plant Physiology. Vol. 16(3) p. 137–146. DOI 10.1590/S1677-04202004000300003.
  • GEISSLER N., HUSSIN S., EL-FAR M.M., KOYRO H.W. 2015. Elevated atmospheric CO 2 concentration leads to different salt resistance mechanisms in a C3 (Chenopodium quinoa) and a C4 (Atriplex nummularia) halophyte. Environmental and Experimental Botany. Vol. 118 p. 67–77. DOI 10.1016/j.envexpbot.2015.06.003.
  • GOEL N., VARSHNEY K.A. 1987. Seed germination and early seedling growth to two chickpea varieties under saline conditions. Note. Legume Research. Vol. 10(6) p. 34–36.
  • GONZÁLEZ A., MARTÍN I., AYERBE L. 2007. Response of barley genotypes to terminal soil moisture stress: phenology, growth, and yield. Australian Journal of Agricultural Research. Vol. 58(1) p. 29–37. DOI 10.1071/AR06026.
  • GREENWAY H., MUNNS R. 1980. Mechanism of salt tolerance in nonhalophytes. Annual Review of Plant Physiology. Vol. 31 p. 149–190. DOI 10.1146/annurev.pp.31.060180.001053.
  • HIRICH A., EL OMARI H., JACOBSEN S.E., LAMADDALENA N., HAMDY A., RAGAB R., CHOUKR-ALLAH R. 2014. Chickpea (‘Cicer arietinum’ L.) physiological, chemical and growth responses to irrigation with saline water. Australian Journal of Crop Science. Vol. 8(5) p. 646–654.
  • ISAYENKOV S.V., MAATHUIS F.J. 2019. Plant salinity stress: many unanswered questions remain. Frontiers in Plant Science. Vol. 10, 80 p. 1–11. DOI 10.3389/fpls.2019.00080.
  • KAASHYAP M., FORD R., BOHRA A., KUVALEKAR A., MANTRI N. 2017. Improving salt tolerance of chickpea using modern genomics tools and molecular breeding. Current Genomics. Vol. 18(6) p. 557–567. DOI 10.2174/1389202918666170705155252.
  • KADIOĞLU B. 2021. Determination of germination biology of some sage (Salvia ssp.) species under salinity stress. Journal of Tekirdag Agricultural Faculty. Vol. 18(2) p. 359–367. DOI 10.33462/jotaf.802681.
  • KAFI M., BAGHERI A., NABATI J., MEHRJERDI M.Z., MASOMI A. 2011. Effect of salinity on some physiological variables of 11 chickpea genotypes under hydroponic conditions. Journal of Science and Technology of Greenhouse Culture. Vol. 1(4) p. 55–70.
  • KATERJI N., MASTRORILLI M., LAHMER F.Z., OWEIS T. 2012. Emergence rate as a potential indicator of crop salt-tolerance. European Journal of Agronomy. Vol. 38 p. 1–9. DOI 10.1016/j.eja.2011.11.006.
  • KAUR G., SHARMA A., GURUPRASAD K., PATII P.K. 2014. Versatile roles of plant NADPH oxidases and emerging concepts. Biotechnology Advances. Vol. 32 p. 551–563. DOI 10.1016/j.biotechadv.2014.02.002.
  • KHAN H.A., SIDDIQUE K.H., MUNIR R., COLMER T.D. 2015. Salt sensitivity in chickpea: Growth, photosynthesis, seed yield components and tissue ion regulation in contrasting genotypes. Journal of Plant Physiology. Vol. 182 p. 1–12. DOI 10.1016/j.jplph.2015.05.002.
  • KHATAAR M., MOHAMMADI M.H., SHABANI F. 2018. Soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Scientific Reports. Vol. 8(1) p. 1–13. DOI 10.1038/s41598-018-20968-z.
  • KOTULA L., CLODE P.L., JIMENEZ J.D.L.C., COLMER T.D. 2019. Salinity tolerance in chickpea is associated with the ability to ‘exclude’ Na from leaf mesophyll cells. Journal of Experimental Botany. Vol. 70(18) p. 4991–5002. DOI 10.1093/jxb/erz241.
  • KOTULA L., KHAN H.A., QUEALY J., TURNER N.C., VADEZ V., SIDDIQUE K.H., COLMER T.D. 2015. Salt sensitivity in chickpea (Cicer arietinum L.): Ions in reproductive tissues and yield components in contrasting genotypes. Plant, Cell & Environment. Vol. 38(8) p. 1565–1577. DOI 10.1111/pce.12506.
  • MA N., HU C., WAN L., HU Q., XIONG J., ZHANG C. 2017. Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Frontiers in Plant Science. Vol. 8, 1671 p. 1–15. DOI 10.3389/fpls.2017.01671.
  • MOHAMED I.A., SHALBY N., BAI C., QIN M., AGAMI R.A., JIE K., ZHOU G. 2020. Stomatal and photosynthetic traits are associated with investigating sodium chloride tolerance of Brassica napus L. cultivars. Plants. Vol. 9(1), 62. DOI 10.3390/plants9010062.
  • MUDGAL V., MADAAN N., MUDGAL A., MISHRA S., SINGH A., SINGH P.K. 2009. Changes in growth and metabolic profile of chickpea under salt stress. Journal of Applied Biosciences. Vol. 23 p. 1436–1446.
  • MUNNS R. 1993. Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell and Environment. Vol. 16 p. 15–24. DOI 10.1111/j.1365-3040.1993.tb00840.x.
  • MUNNS R., TESTER M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology. Vol. 59 p. 651–681. DOI 10.1146/annurev.arplant.59.032607.092911.
  • QADIR M., OSTER J.D. 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment. Vol. 323(1–3) p. 1–19. DOI 10.1016/j.scitotenv.2003.10.012.
  • SAMINENI S., SIDDIQUE K.H., GAUR P.M., COLMER T.D. 2011. Salt sensitivity of the vegetative and reproductive stages in chickpea (Cicer arietinum L.): Podding is a particularly sensitive stage. Environmental and Experimental Botany. Vol. 71(2) p. 260–268. DOI 10.1016/j.envexpbot.2010.12.014.
  • SHANKO D., JATENI G., DEBELA A. 2017. Effects of salinity on chickpea (Cicer arietinum L.) landraces during germination stage. Biochemistry & Molecular Biology Journal. Vol. 3 p. 214–219. DOI 10.21767/2471-8084.100037.
  • SILVA M.D.A., JIFON J.L., DA SILVA J.A., SHARMA V. 2007. Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology. Vol. 19(3) p. 193–201. DOI 10.1590/S1677-04202007000300003.
  • SINGLA R., GARG N. 2005. Influence of salinity on growth and yield attributes in chickpea cultivars. Turkish Journal of Agriculture and Forestry. Vol. 29(4) p. 231–235.
  • SOHRABI Y., HEIDARI G., ESMAILPOOR B. 2008. Effect of salinity on growth and yield of Desi and Kabuli chickpea cultivars. Pakistan Journal of Biological Sciences. Vol. 11(4) p. 664–667. DOI 10.3923/pjbs.2008.664.667.
  • SOUSSI M., OCAÑA A., LLUCH C. 1998. Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of Experimental Botany. Vol. 49(325) p. 1329–1337. DOI 10.1093/jxb/49.325.1329.
  • STROGONOV B.P. 1974. Structure and function of plant cells in saline habitats. New York, London. Israel Program for Scientific Translation pp. 284.
  • SUDHAKAR C., RAMANJULU S., REDDY P.S., VEERANJANEYULU K. 1997. Response of some Calvin cycle enzymes subjected to salinity shock in vitro. Indian Journal of Experimental Botany. Vol. 35 p. 665–667.
  • TERMAAT A., PASSIOURA J.B., MUNNS R. 1985. Shoot turgor does not limit shoot growth of NaCl-affected wheat and barley. Plant Physiology. Vol. 77(4) p. 869–872. DOI 10.1104/pp.77.4.869.
  • TOUCHAN H., AL-DERMOUCH K., GHANDOUR G. 2005. Effect of salinity stress on chickpea growth and productivity. In: Sustainable development and management of drylands in twenty-first century. Eds. A. El-Beltagy, M.C. Saxena. Proceedings of the Ninth International Conference on Dryland Development. 14–17.09.2003, Tehran, Iran. Aleppo, Syria. ICARDA p. 379–382.
  • TURNER N.C., COLMER T.D., QUEALY J., PUSHPAVALLI R., KRISHNAMURTHY L., KAUR J., VADEZ V. 2013. Salinity tolerance and ion accumulation in chickpea (Cicer arietinum L.) subjected to salt stress. Plant and Soil. Vol. 365(1) p. 347–361. DOI 10.1007/s11104-012-1387-0.
  • VADEZ V., KRISHNAMURTHY L., SERRAJ R., GAUR P.M., UPADHYAYA H.D., HOISINGTON D.A., SIDDIQUE K.H.M. 2007. Large variation in salinity tolerance in chickpea is explained by differences in sensitivity at the reproductive stage. Field Crops Research. Vol. 104(1–3) p. 123–129. DOI 10.1016/j.fcr.2007.05.014.
  • VADEZ V., RASHMI M., SINDHU K., MURALIDHARAN M., PUSHPAVALLI R., TURNER N.C., COLMER T.D. 2012. Large number of flowers and tertiary branches, and higher reproductive success increase yields under salt stress in chickpea. European Journal of Agronomy. Vol. 41 p. 42–51. DOI 10.1016/j.eja.2012.03.008.
  • VAN DER MAESSEN L.J. 1972. Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Wageningen University and Research pp. 355.
  • VAN DER ZEE S.E.A.T.M., STOFBERG S.F., YANG X., LIU Y., ISLAM M.N., HU Y.F. 2017. Irrigation and drainage in agriculture: A salinity and environmental perspective. In: Current perspective on irrigation and drainage. Eds. S. Kulshreshtha, A. Elshorbagy. IntechOpen p. 1–21. DOI 10.5772/66046.
  • WILD A. 2003. Soils, land and food: Managing the land during the twenty-first century. Cambridge. Cambridge University Press. ISBN 9780511815577 pp. 246. DOI 10.1017/CBO9780511815577.
  • ZAWUDE S., SHANKO D. 2017. Effects of salinity stress on chickpea (Cicer arietinum L.) landraces during early growth stage. International Journal of Scientific Reports. Vol. 3(7) p. 214–219. DOI 10.18203/issn.2454-2156.IntJSciRep20173093.
  • ZHU J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology. Vol. 53(1) p. 247–273. DOI 10.1146/annurev.arplant.53.091401.143329.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fffadf1-5edd-4df2-8f1f-0360a7b53a88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.