Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-7ffd9c0a-9f1b-4cb2-9dff-8f6af3a2eed2

Czasopismo

Journal of KONES

Tytuł artykułu

Flame propagation in gas feeding pipelines to the IC engine

Autorzy Gruca, M.  Szwaja, S.  Pyrc, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Results from experimental investigation on flame propagation in a pipeline filled with gaseous combustible mixture consisted of hydrogen, methane or 20% hydrogen-methane is presented in the article. The mixture was prepared in separate cylinders and premixed before filling the pipeline. The tests were conducted under various relative equivalence ratio – lambda from 1.0 to 3.0 at pressure of 1 bar and temperature of 25ºC. Hydrogen and methane were selected because these gases are main combustible fractions in several gaseous engine fuels (e.g. natural gas, syngas, biogas). Additionally, the mixture 20% hydrogen and methane, as potential engine fuel, was also under investigation. Flame front was detected with aid of IR photodetectors. Hence, the flame speed was resulted from distance divided by time. As observed, the flame propagation speed was over 100 m/s for both hydrogen and methane premixed mixtures. It was several times higher if compared with the laminar flame speed for these gases. It can be explained by additional acoustic effects (standing waves) taking place inside the pipeline. Results from this investigation can be useful in design and construction of the gas feeding system in the gas fuelled internal combustion engine.
Słowa kluczowe
EN flame propagation   laminar flame speed   methane   hydrogen   combustion  
Wydawca Institute of Aviation
Czasopismo Journal of KONES
Rocznik 2018
Tom Vol. 25, No. 3
Strony 205--212
Opis fizyczny Bibliogr. 15 poz., rys.
Twórcy
autor Gruca, M.
  • Czestochowa University of Technology Faculty of Mechanical Engineering and Computer Science Dąbrowskiego Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250545, +48 34 3250524, fax: +48 34 3250555 , gruca@imc.pcz.czest.pl
autor Szwaja, S.
  • Czestochowa University of Technology Faculty of Mechanical Engineering and Computer Science Dąbrowskiego Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250545, +48 34 3250524, fax: +48 34 3250555 , szwaja@imc.pcz.czest.pl
autor Pyrc, M.
  • Czestochowa University of Technology Faculty of Mechanical Engineering and Computer Science Dąbrowskiego Street 69, 42-201 Czestochowa, Poland tel.: +48 34 3250545, +48 34 3250524, fax: +48 34 3250555 , pyrc@imc.pcz.czest.pl
Bibliografia
[1] Malik, K., Żbikowski, M., Bąk, D., Lesiak, P., Teodorczyk, A., Numerical and experimental investigation of H2-air and H2-O2 detonation parameters in a 9 m long tube, introduction of a new detonation model, International Journal of Hydrogen Energy, 2018-05-30.
[2] Pizzuti, L., Martins, C. A., dos Santos, L. R., Guerra, D. R. S., Laminar burning velocity of methane/air mixtures and flame propagation speed close to the chamber wall, Energy Procedia, Vol. 120, pp. 126-133, August 2017.
[3] Kawakami, T., A study of combustion improvement for flame propagation in a tube by using combination flow and mixture injection, Journal of KONES Powertrain and Transport, Vol. 23, No. 1, pp. 421-425, 2016.
[4] Kawakami, T., Okajima, S., Teodorczyk, A., A study of flame propagation limit of very lean propane air mixture in a combustion tube, Journal of KONES Internal Combustion Engines, Vol. 10, No. 3-4, pp. 149-153, 2003.
[5] Thomas, G., Oakley, G., Bambrey, R., An experimental study of flame acceleration and deflagration to detonation transition in representative process piping, Process Saf. Environ. Prot., Vol. 88, pp. 75-90, 2010.
[6] Chen, Z., Burke, M. P., Ju, Y., Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc. Combust. Inst., Vol. 32, pp. 1253-1260, 2009.
[7] Burke, M. P., Qin, X., Ju, Y., Dryer, F. L., Measurements of hydrogen syngas flame speeds at elevated pressures, Proc 5th US Comb Meet, San Diego, CA, United States 2007.
[8] Gutkowski, A., Tecce, L., Jarosiński, J., Flame quenching by the wall–fundamental characteristics, Journal of KONES, Vol. 14, No. 3, pp. 203-210, 2007.
[9] Szwaja, S., Naber, J. D., Impact of leaning hydrogen-air mixtures on engine combustion knock, Journal of KONES, Vol. 15, No. 2, pp. 483-492, Warsaw 2008.
[10] Szwaja, S., Naber, J. D., Exhaust gas recirculation strategy in the hydrogen SI engine, Journal of KONES, Vol. 14, No. 2, pp. 457-464, 2007.
[11] Jankowski, A., Chosen problems of combustion processes of advanced combustion engine, Journal of KONES, Vol. 20, No. 3, pp. 203-208, Warsaw 2013.
[12] Jankowski, A., Kowalski, M., Creating Mechanisms of Toxic Substances Emission of Combustion Engines, Journal of KONBiN, 4(36), DOI 10.1515/jok-2015-0054, pp. 33-42, Warsaw 2015.
[13] Jankowski, A., Kowalski, M., Environmental Pollution Caused by a Direct Injection Engine, Journal of KONES, Vol. 22, No. 4, DOI: 10.5604/12314005.1168461, pp. 133-138, Warsaw 2015.
[14] Jankowski, A., Sandel, A., Sęczyk, J., Siemińska-Jankowska, B., Some Problems of Improvement of Fuel Efficiency and Emissions in Internal Combustion Engines, Journal of KONES, Vol. 9, No. 1-2, pp. 333-356, Warsaw 2002.
[15] Zurek, J., Kowalski, M., Jankowski, A., Modelling of Combustion Process of Liquid Fuels under Turbulent Conditions, Journal of KONES, Vol. 22, Issue 4, DOI: 10.5604/12314005.1168562, pp. 355-364, Warsaw 2015.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-7ffd9c0a-9f1b-4cb2-9dff-8f6af3a2eed2
Identyfikatory
DOI 10.5604/01.3001.0012.4333