PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Przegląd metod stosowanych w dynamicznych badaniach materiałów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
An overview of methods used in dynamic testing of materials
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono podstawowy opis oraz metodykę badań materiałów i konstrukcji uwzględniających wpływ oddziaływania dużej szybkości odkształcenia na parametry wytrzymałościowe. Scharakteryzowano takie metrologie badawcze jak: test Taylora, metoda dzielonego pręta Hopkinsona i test pierścieniowy, pozwalające określić dynamiczne właściwości materiałów.
EN
The paper presents an elemental description and methodology of tests that take into account the effect of high strain rate on materials strength parameters. The article describes such testing methodology as: Taylor test, split Hopkinson pressure bar method, and expanding ring test to determine the dynamic properties of materials.
Rocznik
Strony
15--35
Opis fizyczny
Bibliogr. 93 poz., rys.
Twórcy
autor
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Mechaniki i Inżynierii Obliczeniowej, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
  • Wojskowa Akademia Techniczna, Wydział Inżynierii Mechanicznej, Instytut Mechaniki i Inżynierii Obliczeniowej, ul. gen. S. Kaliskiego 2, 00-908 Warszawa
Bibliografia
  • [1] Janiszewski J., Badania materiałów inżynierskich w warunkach obciążenia dynamicznego, Wojskowa Akademia Techniczna, Warszawa 2012.
  • [2] Panowicz R., Janiszewski J., Włodarczyk E., Wybór związku konstytutywnego do analizy zachowania się materiału pierścienia rozpęczanego impulsowym silnym polem elektromagnetycznym, Biuletyn WAT, 56, 4, 2007.
  • [3] Lu G., Wang B., Zhang T., Taylor impact test for ductile porous materials -Part 1: theory, International Journal of Impact Engineering, 25, 10, 2001, 981-991.
  • [4] Kuhn H., Medlin D. (eds.), Mechanical Testing and Evaluation, ASM International, 2000.
  • [5] Pratheeksh M., Akshatha D., FE based Crash Simulation of belly landing of a light transport aircraft, GITAM University, Hyderabad, India 2019.
  • [6] Tansel D., Ballistic penetration of hardened steel plates, Middle East Technical University, 2010.
  • [7] Zukas J. A. (ed.), High velocity impact dynamics, Wiley, New York 1990.
  • [8] Taylor G. I., The use of flat-ended projectiles for determining dynamic yield stress I. Theoretical considerations, Proc. R. Soc. Lond. Ser. Math. Phys. Sci.,194, 1948, 289-299.
  • [9] Slais M., Forejt M., Dohnal I., Verification of Measurement of Dynamic Loading During The Taylor Anvil Test, MM Science Journal, 2016, 1343-1345.
  • [10] Włodarczyk E., Janiszewski J., Określenie dynamicznej granicy plastyczności materiału penetratora wykonanego ze spieku na osnowie wolframowej metodą Taylora, Biuletyn WAT, 58, 2, 2009
  • [11] Sen S., Banerjee B., Shaw A., Taylor impact test revisited: Determination of plasticity parameters for metals at high strain rate, International Journal of Solids and Structures, 193-194, 2020, 357-374.
  • [12] Włodarczyk E., Sarzyński M., Dynamiczne zachowanie się metalowego pręta ze wzmocnieniem potęgowym uderzającego w sztywną tarczę. Część I. Rozważania teoretyczne, Biuletyn WAT, 62, 1, 2013.
  • [13] Włodarczyk E., Sarzyński M., Strain Energy Method for Determining Dynamic Yield Stressin Taylor’s Tes, Engineering Transactions, 65, 2017, 499-511.
  • [14] Włodarczyk E., Sarzyński M., Behaviour of ductile low porous materials with strain hardening in Taylor experiment, Biuletyn WAT / Bulletin of MUT, 64, 2, 2015, 69-101.
  • [15] Juncheng L., Gang C., Yonggang L., Fenglei H., Investigation on the Application of Taylor Impact Test to High-G Loading, Frontiers in Materials, 8, 2021.
  • [16] Forde L. C., Proud W. G., Walley S. M., Symmetrical Taylor impact studies of copper, Proc. R. Soc. Math. Phys. Eng. Sci. A., 465, 2009, 769-790.
  • [17] Couque, H., Experimental and numerical analyses of the dynamic failure processes of symmetric Taylor impact specimens, EPJ Web Conf.,183, 01043, 2018.
  • [18] Chakraborty S., Shaw A., Banerjee B., An axisymmetric model for Taylor impact test and estimation of metal plasticity, Proc. R. Soc. Math. Phys. Eng. Sci., 471, 2174, 2015.
  • [19] Volkov G. A., Bratov V. A., Borodin E. N., Evstifeev A. D., et al., Numerical simulations of impact Taylor tests, Journal of Physics Conference Series, 1556, 012059, 2020.
  • [20] Brunig M., Driemeier L., Numerical simulation of Taylor impact tests, International Journal of Plasticity, 23, 2007, 1979-2003.
  • [21] Rodionov E. S., Lupanov V. G., Gracheva N. A., Mayer P. N. et al., Taylor Impact Tests with Copper Cylinders: Experiments, Microstructural Analysis and 3D SPH Modeling with Dislocation Plasticity and MD-Informed Artificial Neural Network as Equation of State, Metals, 12, 2, 2022, 264.
  • [22] Liu B., Kovachki N., Li Z., Azizzadenesheli K. et al., A learning-based multiscale method and its application to inelastic impact problems, Journal of the Mechanics and Physics of Solids, 158, 2022,104668.
  • [23] Julien R., Jankowiak T., Rusinek A., Wood P., Taylor’s Test Technique for Dynamic Characterization of Materials: Application to Brass, Experimental Techniques, 40, 2016, 347-355.
  • [24] House J. W., Taylor Impact Testing, University of Kentucky, 1989.
  • [25] Sarva S., Mulliken A. D., Boyce M. C., Mechanics of Taylor impact testing of polycarbonate, International Journal of Solids and Structures, 44, 2007, 2381-2400.
  • [26] Wang B., Zhang J., Lu G., Taylor impact test for ductile porous materials - Part 2: experiments, International Journal of Impact Engineering, 28, 2003, 499-511.
  • [27] Othman R. (ed.), The Kolsky-Hopkinson Bar Machine, Springer International Publishing, Cham 2018.
  • [28] Yang R., Zhang J.G., Liang H.Z., Shao F., et al., Split Hopkinson Pressure Bar (SHPB) Test and Different Modeling Methods of Aluminum Honeycomb Materials, Strength of Materials, 54, 2022, 33-40.
  • [29] Chen W. W., Song B., Split Hopkinson (Kolsky) bar: design, testing and applications, Springer, New York, NY Heidelberg 2011.
  • [30] Gary G., Mohr D., Modified Kolsky Formulas for an Increased Measurement Duration of SHPB Systems, EExperimental Mechanics, 53, 4, 2013, 713-717.
  • [31] Panowicz R., Janiszewski J., Kochanowski K., Effects of Sample Geometry Imperfections on the Results of Split Hopkinson Pressure Bar Experiments, Experimental Techniques, 43, 2019, 397-403.
  • [32] Wang J., Li W., Xu L., Du Z. et al., Experimental study on pulse shaping techniques of large diameter SHPB apparatus for concrete, Latin American Journal of Solids and Structures, 18,1, 2021, e343.
  • [33] Pushkov V. A., Mikhailov A. L., Tsibikov A. N., Okinchits A. A. et al., Studying the Characteristics of Explosives under Dynamic Load Using the Split Hopkinson Pressure Bar Technique, Combustion Explosion Shock Waves, 57, 1, 2021, 112-121.
  • [34] Ameri A.A.H., Brown A.D., Studying the Characteristics of Explosives under Dynamic Load Using the Split Hopkinson Pressure Bar Technique, Combustion Behavior Materials 2019, 5, 39-50.
  • [35] Sasso M., Fardmoshiri M., Mancini E., Rossi M. et al., High speed imaging for material parameters calibration at high strain rate, European Physical Journal Special Topics, 225, 2016, 295-309.
  • [36] Nie H., Suo T., Wu B., Li Y. et al., A versatile split Hopkinson pressure bar using electromagnetic loading, International Journal of Impact Engineering, 116, 2018, 94-104.
  • [37] Silva C. M. A., Rosa P. A. R., Martins P. A. F., An innovative electromagnetic compressive split Hopkinson bar, International Journal of Mechanics and Materials in Design, 5, 3, 2009, 281-288.
  • [38] Cai S., Wu D., Zhou J., Zhang C. et al., Improvement and application of miniature Hopkinson bar device based on series-parallel coil array electromagnetic launch, Measurement, 186, 2021, 110203.
  • [39] Jin K., Qi L., Kang H., Guo Y. et al., A novel technique to measure the biaxial properties of materials at high strain rates by electromagnetic Hopkinson bar system, International Journal of Impact Engineering, 167, 2022, 104286.
  • [40] Xie H., Zhu J., Zhou T., Zhao J., Novel Three-dimensional Rock Dynamic Tests Using the True Triaxial Electromagnetic Hopkinson Bar System, Rock Mechanics and Rock Engineering, 54, 2021, 2079-2086.
  • [41] Gorham D.A., Specimen inertia in high strain-rate compression, Journal of Physics D Applied Physics, 22, 12, 1989, 1888-1893.
  • [42] Hockly M., Siviour C.R., Specimen Inertia in high strain rate tensile testing, The European Physical Journal Conferences, 94, 2015, 01050.
  • [43] Samanta S.K., Dynamic deformation of aluminium and copper at elevated temperatures, Journal of the Mechanics and Physics of Solids, 19, 3, 1971, 117-135.
  • [44] Potter R.S., Cammack J.M., Braithwaite C.H., Church P.D. et al., Problems Associated with Making Mechanical Measurements on Water-Ice at Quasistatic and Dynamic Strain Rates, Journal of Dynamic Behavior of Materials, 5, 2019, 198-211.
  • [45] Zuanetti B., Ramos K. J., Cady C. M., Meredith C. S. et al., Miniature Beryllium Split-Hopkinson Pressure Bars for Extending the Range of Achievable Strain-Rates, Metals, 12, 2022, 1834.
  • [46] Basalin A., Konstantinov A., Igumnov L., Belov A. et al., The direct impact method for studying dynamic behavior of viscoplastic materials, Journal of Applied Computational Mechanics, 8, 2, 2022.
  • [47] Jakkula P., Ganzenmüller G.C., Beisel S., Rüthnick P. et al., The Symmpact: A Direct-Impact Hopkinson Bar Setup Suitable for Investigating Dynamic Equilibrium in Low-Impedance Materials, Experimental Mechanics, 62, 2022, 213-222.
  • [48] Fíla T., Koudelka P., Falta J., Zlámal P. et al., Dynamic impact testing of cellular solids and lattice structures: Application of two-sided direct impact Hopkinson bar, International Journal of Impact Engineering, 148, 2021,103767.
  • [49] Kim D., Shin H., Minimum Required Distance of Strain Gauge from Specimen for Measuring Transmitted Signal in Split Hopkinson Pressure Bar Test, MATEC Web Conf., 308, 2020, 04005.
  • [50] Tyas A., Watson A.J., Experimental evidence of Pochammer-Chree strain variations in elastic cylinders, Experimental Mechanics, 40, 2000, 331-337.
  • [51] Panowicz R., Trypolin M., Kształtowanie impulsu wymuszającego w zmodyfikowanej metodzie dzielonego pręta Hopkinsona, XV Konferencja Naukowo-Techniczna Techniki Komputerowe w Inżynierii, Mikołajki 2018.
  • [52] Panowicz R., Konarzewski M., Influence of Imperfect Position of a Striker and Input Bar on Wave Propagation in a Split Hopkinson Pressure Bar (SHPB) Setup with a Pulse-Shape Technique, Applied Science, 10, 2020, 2423.
  • [53] Zhu X., Zhang X., Yao W., Li W., Split-Hopkinson Pressure Bar Test of Silicone Rubber: Considering Effects of Strain Rate and Temperature, Polymers 2022, 14, 3892.
  • [54] Fahem A.F., Kidane A., Hybrid Computational and Experimental Approach to Identify the Dynamic Initiation Fracture Toughness at High Loading Rate, [in:] J. Kimberley, L. Lamberson, S. Mates (eds.), Dynamic Behavior of Materials, Volume 1, Springer International Publishing, Cham 2018, pp. 141-146.
  • [55] Xu Y., Zhou J., Farbaniec L., Pellegrino A., Optimal Design, Development and Experimental Analysis of a Tension-Torsion Hopkinson Bar for the Understanding of Complex Impact Loading Scenarios, Experimental Mechanics, 63, 2023, 773-789.
  • [56] Ellwood S., Griffiths L. J., Parry D. J., A Tensile Technique for Materials Testing at High Strain Rates, Journal of Physics [E] Scientific Instruments, 15, 1982, 1169-1172.
  • [57] Lewis J. L., Goldsmith W., A Biaxial Split Hopkinson Bar for Simultaneous Torsion and Compression, Review of Scientific Instruments, 44, 1973, 811-813.
  • [58] Liu C., Wang W., Suo T., Tang Z. et al., Achieving Combined Tension-Torsion Split Hopkinson Bar test based on electromagnetic loading, International Journal of Impact Engineering, 168, 2022, 104287.
  • [59] Pierron F., Sutton M.A., Tiwari V., Ultra high speed DIC on a three point bending test mounted on a Hopkinson bar, [in:] T. Proulx (ed.), Application of Imaging Techniques to Mechanics of Materials and Structures, Springer, New York, vol. 4, 2013, 451-460.
  • [60] Henschel S., Krüger L., Crack initiation at high loading rates applying the four-point bending split Hopkinson pressure bar technique, EPJ Web Conf., 94, 2015, 01028.
  • [61] Loya J.A., Rubio L., Fernández-Sáez J., Numerical simulation of dynamic four-bending-tests using a modified Split Hopkinson Pressure Bar, [in:] DYMAT 2009 - 9th International Conferences on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, EDP Sciences, Brussels, Belgium 2009, 1831-1837.
  • [62] Zhang Q. B., Zhao J., A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials, Rock Mechanics and Rock Engineering, 47, 2014, 1411-1478.
  • [63] Deng Y. J., Chen H., Chen X. W., Yao Y., Dynamic failure behaviour analysis of TiB2-B4C ceramic composites by split Hopkinson pressure bar testing, Ceramics International, 47, 2021, 22096-22107.
  • [64] Li Q. M., Meng H., About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test, International Journal of Solids and Structures, 40, 2003, 343-360.
  • [65] Khosravani M. R., Weinberg K., A review on split Hopkinson bar experiments on the dynamic characterization of concrete, Construction and Building Materials, 190, 2018, 1264-1283.
  • [66] Gong H., Luo Y., Meng F., Du H., Failure behavior and strength deterioration model of high-performance concrete under coupled elevated temperature, biaxial constraint and impact loading, Journal of Building Engineering, 75, 2023, 107002.
  • [67] Felten M., Fries M., Fíla T., Zlámal P. et al., High Strain‐Rate Compression Experiments on Ni/Polyurethane Hybrid Metal Foams Using the Split‐Hopkinson Pressure Bar Technique, Advanced Engineering Materials, 24, 2022, 2100872.
  • [68] Tran D.T., Tsai L., Effect of strain rates on mechanical response of whole muscle bundle, , J. Biol. Phys., 49, 2, 2023, 257-267.
  • [69] Pilcher A., Wang X., Kaltz Z., Garrison J.G. et al., High Strain Rate Testing of Bovine Trabecular Bone, Journal of Biomechanical Engineering 2010, 132, 081012.
  • [70] Saha S., Bal S., Detailed study of dynamic mechanical analysis for nanocomposites, Emerging Materials Research, 8, 2019, 408-417.
  • [71] Tarfaoui M., Dynamic Composite Materials Characterisation with Hopkinson Bars: Design and Development of New Dynamic Compression Systems, Journal of Composites Science, 7, 1, 2023, 33.
  • [72] Zhou J., Pellegrino A., Heisserer U., Duke P. W. et al., A new technique for tensile testing of engineering materials and composites at high strain rates, Proc. R. Soc. Math. Phys. Eng. Sci., 475, 2019, 20190310.
  • [73] Warnes R. H., Karpp R. R., Follansbee P. S., The Freely Expanding Ring Test - A Test to Determine Material Strength at High Strain Rates, J. Eng. Mater. Technol., 108, 1986, 335-339.
  • [74] Sedlacek R., Halden F. A., Method for Tensile Testing of Brittle Materials, Review of Scientific Instruments, 33, 298-300.
  • [75] Hoggatt C. R., Recht R. F., Stress-strain data obtained at high rates using an expanding ring: Investigation indicates that dynamic symmetrical free expansion of thin rings offers a valid means for obtaining uniaxial tensile stress-strain relationships at high strain rates, Experimental Mechanics, 9, 1969, 441-448.
  • [76] Imbert J., Worswick M., Development of an Interrupted Pulse Expanding Ring Test, 7th International Conference on High Speed Forming 2016.
  • [77] Zhang J., Zheng Y., Zhou F., Liu J., Experimental Technique for Dynamic Fragmentation of Liquid-Driving Expanding Ring, EPJ Web of Conferences, 183, 2018, 02034.
  • [78] Włodarczyk E., Janiszewski J., Dynamiczne stany naprężenia i skończonego odkształcenia w metalowym cienkim pierścieniu rozszerzanym wybuchowo, Biuletyn WAT, 56, 1, 2007.
  • [79] Zhang H., Ravi-Chandar K., On the dynamics of necking and fragmentation - II. Effect of material properties, geometrical constraints and absolute size, International Journal of Fracture, 150, 2008, 3-36.
  • [80] Zhang H., Ravi-Chandar K., On the dynamics of necking and fragmentation - I. Real-time and post-mortem observations in Al 6061-O, International Journal of Fracture, 142, 2007, 183-217.
  • [81] Zhang H., Ravi-Chandar K., On the dynamics of localization and fragmentation-IV. Expansion of Al 6061-O tubes, International Journal of Fracture, 163, 2010, 1-65.
  • [82] Zhang H., Liechti K.M., Ravi-Chandar K., On the dynamics of localization and fragmentation - III. Effect of cladding with a polymer, International Journal of Fracture, 155, 2009, 101-118.
  • [83] Morales S.A., Albrecht A.B., Zhang H., Liechti K.M. et al., On the dynamics of localization and fragmentation: V. Response of polymer coated Al 6061-O tubes, International Journal of Fracture, 172, 2011, 161-185.
  • [84] Yang K., Taber G., Sapanathan T., Vivek A. et al., Suitability of the electromagnetic ring expansion test to characterize materials under high strain rate deformation, MATEC Web Conf., 80, 2016, 15002.
  • [85] Grady D. E., Benson D. A., Fragmentation of metal rings by electromagnetic loading: Fragmentation studies on rapidly expanding metal rings are performed with electromagnetic loading. Dynamic-fracture strain and fragment-size measurements are reported for aluminum and copper, Experimental Mechanics, 23, 1983, 393-400.
  • [86] Panowicz R., Janiszewski J., Próba wyznaczenia wartości stałych równania Johnsona-Cooka na podstawie testu pierścieniowego, Biuletyn WAT, 57, 3, 2008.
  • [87] Janiszewski J., Pichola W., Maciaszek K., Elektromagnetyczny test pierścieniowy w warunkach próżni, Biuletyn WAT, 60, 2, 2011.
  • [88] Joyce P. J., Brown L. P., Landen D., Satapathy S., Measurement of High-Strain-Rate Strength of a Metal-Matrix Composite Conductor, [in:] T. Proulx (ed.), Dynamic Behavior of Materials, Volume 1, Springer New York, New York, NY 2011, pp. 269-276.
  • [89] Li F., Mo J., Li J., Huang L. et al., Effects of Deformation Rate on Ductility of Ti-6Al-4V Material, Procedia Engineering, 81, 2014, 754-759.
  • [90] Jiang F., Sun Q. Q., Lai Z. P., Luo B. et al., Electromagnetically Driven Expanding Ring Test for the Strength Study of the Zylon/Epoxy Composite, IEEE Trans. Appl. Supercond., 26, 2016, 1-6.
  • [91] Gourdin W. H., Analysis and assessment of electromagnetic ring expansion as a high‐strain‐rate test, Journal of Applied Physics, 65,1989, 411-422.
  • [92] Gourdin W. H., Weinland S. L., Boling R. M., Development of the electromagnetically launched expanding ring as a high‐strain‐rate test technique, Review of Scientific Instruments, 60, 1989, 427-432.
  • [93] Janiszewski J., Ductility of selected metals under electromagnetic ring test loading conditions, International Journal of Solids and Structures, 49, 2012, 1001-1008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7ff3048a-751d-4d9b-a99f-7a7e9bceb169
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.