PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Modelling for the Effect of Metal-mould Air Gaps on Shell Thickness in Horizontal Continuous Casting of Cast Iron

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a numerical model for the horizontal continuous casting of cast iron (HCCCI). A computational three-dimensional (3D) steady-state, coupled with fluid flow and heat transfer simulation model was developed and validated against experimental results to study the shell thickness and solidification of ductile cast iron. The study introduces the influence of an air gap at the melt-mould interface, which has long been known to have a detrimental effect on the efficiency of the process. The effect of the length and thickness of the melt-mould air gaps (also referred to as top air gaps) on solidification and remelting of the solid strand is studied. Parametric studies on top air gaps suggested a substantial effect on the solid and eutectic area at the top-outlet end of the die when the length of air gas was varied. This study serves to create a foundational and working model with the overall objective of process optimisation and analyzing the effect of operating process input parameters on the shell thickness of the strand.
Rocznik
Strony
53--60
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
  • Technical University of Denmark, Denmark
autor
  • Technical University of Denmark, Denmark
  • Technical University of Denmark, Denmark
Bibliografia
  • [1] Hattel, J.H. (2008). Integrated modelling in materials and process technology. Materials Science and Technology. 24(2), 137-148. https://doi.org/10.1179/174328407X236526.
  • [2] Sandberg, M., Yuksel, O., Baran, I., Hattel, J.H. & Spangenberg, J. (2021). Numerical and experimental analysis of resin-flow, heat-transfer, and cure in a resin-injection pultrusion process. Composites Part A: Applied Science and Manufacturing. 143, 106231. https://doi.org/10.1016/ j.compositesa.2020.106231.
  • [3] Chan, K.S., Pericleous, K. & Cross, M. (1991). Numerical-Simulation Of Flows Encountered During Mold-Filling. Applied Mathematical Modelling. 15(11-12), 624-631. https://doi.org/10.1016/S0307-904X(09)81008-1.
  • [4] Mirbagheri, S.M.H., Esmaeileian, H., Serajzadeh, S., Varahram, N. & Davami, P. (2003). Simulation of melt flow in coated mould cavity in the casting process. Journal of Materials Processing Technology. 142(2), 493-507. https://doi.org/10.1016/S0924-0136(03)00649-6.
  • [5] Mirbagheri, S.M.H., Dadashzadeh, M., Serajzadeh, S., Taheri, A.K. & Davami, P. (2004). Modeling the effect of mould wall roughness on the melt flow simulation in casting process. Applied Mathematical Modelling. 28(11), 933-956. https://doi.org/10.1016/j.apm.2004.03.007.
  • [6] Lerner, V. S., & Lerner, Y. S. (2005). Solidification modeling of continuous casting process. Journal of Materials Engineering and Performance. 14(2), 258-262. https://doi.org/10.1361/10599490523355.
  • [7] Louhenkilpi, S. (2014). Continuous casting of steel. Treatise on process metallurgy (pp.373-434). Elsevier. DOI:10.1016/B978-0-08-096988-6.00007-9.
  • [8] Campbell, J. (2015). Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design: Second Edition. Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design: Second Edition. Elsevier Inc. https://doi.org/10.1016/C2014-0-01548-1.
  • [9] Stefanescu. D.M. (2017). ASM Handbook, Volume 01A - Cast Iron Science and Technology. In Asm Handbook, Volume 01a - Cast Iron Science and Technology. ASM International.
  • [10] O’Rourke, R. & Grander, M. (1999). Cast iron: a solid choice for reducing gear noise. Gear Technology. 16(5), 46-49.
  • [11] Thompson, K. & Wolf, M. (1988). The Concast heat transfer model. A proven tool for optimized slab caster design and operation. Concast Technol. News. 27, 6.
  • [12] Choudhary, S.K., Mazumdar, D. & Ghosh, A. (1993). Mathematical modelling of heat transfer phenomena in continuous casting of steel. Isij International. 33(7), 764-774. https://doi.org/10.2355/isijinternational.33.764.
  • [13] Louhenkilpi, S., Laitinen, E. & Nieminen, R. (1993). Real-time simulation of heat transfer in continuous casting. Metallurgical Transactions B. 24(4), 685-693. https://doi.org/10.1007/BF02673184.
  • [14] Bamberger, M. & Prinz, B. (1986). Mathematical-modeling of the temperature-field in continuous-casting. Zeitschrift Fur Metallkunde. 77(4), 234-238.
  • [15] Funk, G., Böhmer, J.R., Fett, F.N. & Hentrich, R. (1993). Coupled thermal and stress-strain models for the continuous casting of steels. Steel Research. 64(5), 246-254. https://doi.org/10.1002/srin.199301017.
  • [16] Louhenkilpi, S.J. (1996). Simulation and control of heat transfer in continuous casting of steel. Finland: Finnish Academy of Technology.
  • [17] Chatterjee, A., Dutta, R., Mukhopadhyay, P.K. & Chattopadhyay, S. (1992). Heat transfer during solidification of continuously cast slabs–mathematical modelling work at tata steel. Process Technology Conference Proceedings. 10, 325-331.
  • [18] Tiedje, N. & Langer, E.W. (1993). Numerical modelling of heat transfer and solidification of continuously cast billets. Scandinavian Journal of Metallurgy. 22, 55-60. ISSN: 0371-0459
  • [19] Zhang, Y., Su, J., Zhu, J., Gan, Y., & Wang, Y. (1999). Numerical simulation on solidification process of horizontally continuously cast round iron bars. Chinese Journal of Mechanical Engineering (English Edition). 12(3), 204-210.
  • [20] Thomson, R. (1977). Notes on heat transfer and solidification rates in the continous casting of cast iron. The British Foundryman. 70(1), 1-7.
  • [21] Croft, D.R., Toothill, D., Telford, B. (1985). Heat transfer in horizontal continuous casting. In Numerical Methods in Thermal Problems, Proceedings of the Fourth International Conference, 15-18 July 1985 (pp. 1365-1376). Swansea, UK: Pineridge Press.
  • [22] Lerner, Y.S. (2004). Continuous casting of ductile iron. Foundry Management and Technology. 132(8), 40-67.
  • [23] Louhenkilpi, S. (2003). Modelling of heat transfer in continuous casting. Materials Science Forum. 414, 445-454. https://doi.org/10.4028/www.scientific.net/MSF.414-415.445
  • [24] Cai, Z.Z. & Zhu, M.Y. (2014). Simulation of air gap formation in slab continuous casting mould. Ironmaking and Steelmaking. 41(6), 435-446. https://doi.org/10.1179/ 1743281213Y.0000000139.
  • [25] G. Thomas, B., Moitra, A. & Mcdavid, R. (1996). Simulation of longitudinal off- corner depressions in continuously- cast steel slabs. Iron and Steelmaker. 23(4), 57-70.
  • [26] Cai, Z., & Zhu, M. (2014). Non-uniform heat transfer behavior during shell solidification in a wide and thick slab continuous casting mold. International Journal of Minerals, Metallurgy, and Materials, 21(3), 240–250.
  • [27] Kim, K., Han, H.N., Yeo, T., Lee, Y., Oh, K.H., & Lee, D.N. (1997). Analysis of surface and internal cracks in continuously cast beam blank. Ironmaking & Steelmaking. 24(3), 249-256.
  • [28] Han, H.N., Lee, J.-E., Yeo, T., Won, Y.M., Kim, K., Oh, K. H. & Yoon, J.-K. (1999). A finite element model for 2-dimensional slice of cast strand. ISIJ International. 39(5), 445-454. https://doi.org/10.2355/isijinternational.39.445.
  • [29] Nishida, Y., Droste, W. & Engler, S. (1986). The air-gap formation process at the casting-mold interface and the heat transfer mechanism through the gap. Metallurgical Transactions B (Process Metallurgy). 17(4), 833-844. DOI: 10.1007/BF02657147.
  • [30] Croft, D.R., Lilley, D.G. (1977). Heat transfer calculations using finite difference equations. United Kingdom.
  • [31] Fredriksson, H., & Åkerlind, U. (2006). Materials Processing During Casting. England: John Wiley & Sons. DOI:10.1002/9780470017920.
  • [32] Proservice Tech. (2019). Thermal Analysis Software. Retrieved June 17, 2022, from https://proservicetech.it/wp-content/uploads/2021/11/Proservicetech_Itaca_2020_Inglese_Bassa.Pdf.
  • [33] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (1985). Fundamentals of heat and mass transfer. United States of America: John Wiley & Sons.
  • [34] Bockus, S. (2006). Investigation of the shell solidification in horizontal continuous casting process. In Industrial Engineering-Adding Innovation Capacity of Labour Force and Entrepreneurs: 5th International DAAAM Baltic Conference, 20-22 April 2006 (pp.20-22). Tallinn, Estonia.
  • [35] Ansys, Inc. (2014). Ansys Fluent User’s Guide, Release 14.0.
  • [36] Jabbaribehnam, M., Spangenberg, J. & Hattel, J.H. (2016). Particle migration using local variation of the viscosity (LVOV) model in flow of a non-Newtonian fluid for ceramic tape casting. Chemical Engineering Research and Design. 109, 226-233. https://doi.org/10.1016/j.cherd.2016.01.036.
  • [37] Jabbari, M., Baran, I., Mohanty, S., Comminal, R., Sonne, M. R., Nielsen, M.W., Spangenberg, J. & Hattel, J.H. (2018). Multiphysics modelling of manufacturing processes: A review. Advances in Mechanical Engineering, 10(5), 1-31. https://doi.org/10.1177/1687814018766188.
  • [38] Comminal, R., Serdeczny, M.P., Pedersen, D.B. & Spangenberg, J. (2018). Numerical modeling of the material deposition and contouring precision in fused deposition modeling. In Annual International Solid Freeform Fabrication Symposium, (pp. 1855-1864). University of Texas at Austin.
  • [39] Serdeczny, M.P., Comminal, R., Pedersen, D.B. Spangenberg, J. (2018). Numerical prediction of the porosity of parts fabricated with fused deposition modeling. In Annual International Solid Freeform Fabrication Symposium, (pp. 1849-1854). University of Texas at Austin.
  • [40] Serdeczny, M.P., Comminal, R., Pedersen, D.B. Spangenberg, J. (2018). Numerical study of the impact of shear thinning behaviour on the strand deposition flow in the extrusion-based additive manufacturing. In Proceedings of the 18th International Conference of the European Society for Precision Engineering and Nanotechnology, June 2018 (pp.283-284). Venice, Italy
  • [41] McCabe, W.L., Smith, J.C., Harriott, P. (1985). Unit operations of chemical engineering. McGraw-Hill.
  • [42] Valencia, J.J., Quested, P.N. (2013). Thermophysical properties. ASM Handbook, Casting. 15 (pp. 468-481). ASM International. DOI: 10.1361/asmhba0005240.
  • [43] Heraeus. (n.d.). Continuous temperature mesurement in liquid steel. Retrieved May 27, 2022, from https://www.heraeus.com/media/media/hen/doc_hen/sensors_and_probes/cas-temp.pdf.
  • [44] Stefanescu, D.M. (1988). Solidification of eutectic alloys: Cast Iron. ASM Handbook. 15, 168-181.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fec08b2-ecd1-4c6b-9b18-58df8ef6618e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.