PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Recast Layer on the Fatigue Life of Ti6Al4V Processed by Electric Discharge Machining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research work, Ti6Al4V alloy material was subjected to electric discharge machining (EDM) and its fatigue life was investigated at low cycle fatigue mode. In order to evaluate the influence of recast layer generated during the machining process on the fatigue life, samples prepared using end milling process were also subjected to similar tests and a comparative analysisis presented. Data were observed in the fully reversed fatigue mode at room temperature using samples fabricated as per ASTM standard E606. The specimen were machined on a spark electric discharge die sink machine which were subjected to fatigue, and the recorded fatigue lives were compared with the fatigue life of end milled specimen. The machined surfaces were examined through optical and scanning electron microscopes, and the roughness was measured with a standard profilometer. It was observed that when the discharge current is augmented, the recast layer formed was in the range of 20 to 70 μm thick. From the results, it is being concluded that fatigue life of the samples fabricated by EDM is less for various load conditions when compared with that of the end milled sample. The milled sample at 160 MPa load exhibited 2.71×105 cycles, which is 64% more when compared to EDM sample.
Słowa kluczowe
Twórcy
  • Arunai Engineering College, Department of Mechanical Engineering, Thiruvannamalai, India
autor
  • School of Mechanical Engineering, Vellore Institute of Technology, Vellore - 632014, India
Bibliografia
  • [1] T. M. Mower, Int. J. Fatigue 64, 84-96 (2014).
  • [2] M. S. Murali, S. H. Yeo, Jpn. J. Appl. Phys. 44 (7A), 5254-5263 (2005).
  • [3] F. Klocke, D. Welling, J. Dieckmann, Procedia Engineer. 19, 184-189 (2011).
  • [4] J. Strasky, M. Janecek, P. Harcuba, M. Bukovina, L. Wagner, J. Mech. Behav. Biomed. 4, 1955-1962 (2011).
  • [5] M. S. Mhatre, S. U. Sapkal, R. S. Pawade, Proc. Mat. Sci. 5, 2014-2022 (2014).
  • [6] A. Hascalik, U. Caydas, Appl. Mater. Sci. 253, 9007-9016 (2007).
  • [7] J. Strasky, M. Janecek, P. Harcuba, Electric discharge machining of Ti-6Al 4V alloy for biomedical use, in: J. Safrankova and J. Pavlu (Eds), Proceedings of the 20th Annual Conference of Doctoral Students - WDS 2011 (2011).
  • [8] G. Schroeder, J. Albrecht, G. Luetjering, Mater. Sci. Engineer. 319-321, 602-604 (2001).
  • [9] R. K. Nalla, B. L. Boyce, J. P. Campbell, J. O. Peters, R. O. Ritchie, Metall. Mater. Trans. 33, 899-918 (2002).
  • [10] D. F. Neal, P. A. Blenkinsop, Acta. Metall. Mater. 24, 59-63 (1976).
  • [11] T. Nakamura, H. Oguma, Effects of vacuum like environment around interior crack on gigacycle fatigue properties, in: Proceedings of the Materials Science and Technology (2008).
  • [12] T. Nakamura, H. Oguma, R. Yamashita, A Mechanism of Interior-Originating Fatigue of Ti-6Al-4V Based on Crack Growth Behavior in a High Vacuum, in: M. Niinomi, Nihon Kinzoku Gakkai (Eds), Proceedings of 11th World Conference on Titanium (Ti-2007), Science and Technology (2007).
  • [13] H. Oguma, T. Nakamura, The effect of microstructures on interior-originating fatigue fracture of Ti-6Al-4V in gigacycle region, in: G. Luetjering, J. Albrecht (Eds), Proceedings of 10th World Conference on Titanium (Ti-2003), Science and Technology (2003).
  • [14] H. Oguma, T. Nakamura, Scripta. Mater. 63, 32-34 (2010).
  • [15] J. P. Davim, Surface Integrity in Machining, Springer (2010).
  • [16] S. K. Ho, D. K. Aspinwall, W. Voice, J. Mater. Process. Tech. 191, 123-126 (2007).
  • [17] Oguzhan Yilmaz, M. Ali Okka, Int. J. Adv. Manuf. Tech. 51 (1-4), 185-194 (2010).
  • [18] A. Hascalik, U. Caydas, J. Mater. Process. Tech. 190, 173-180 (2007).
  • [19] B. B. Pradhan, M. Masanta, B. R. Sarkar, B. Bhattacharyya, Int. J. Adv. Manuf. Tech. 41, 1094-1106 (2009).
  • [20] P. Harcuba, L. Bacakova, J. Strasky, M. Bacakova, K. Novotna, M. Janecek, J. Mech. Behav. Biomed. 7, 96-105 (2012).
  • [21] Z. Yang, C. B. Kim, C. Cho, H. G. Beom, Int. J. Sol. Struc. 45, 713-731 (2008).
  • [22] R. E. Peterson, Stress Concentration Factors: Charts and Relations Useful in Making Strength Calculations for Machine Parts and Structural Elements, Wiley (1974).
  • [23] G. Lutjering, Mater. Sci. Engineer. 243, 32-45 (1998).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fe7a790-d907-422e-81e3-63eee6240744
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.