PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Time-Resolved Sensitivity of a Cadmium-Doped Copper Oxide Thin Film as a Chlorine Gas Detector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to its strong affinity for chlorine gas, Cd can potentially form CdCl2. Cd-doped CuO thin films are sensitive to chlorine gas, as careful inclusion of Cd in the CuO crystal structure modifies the energy gap depending on the dopant concentration. We employed spray pyrolysis to deposit Cd-doped CuO on FTO (Fluorine Tin Oxide) while heating the substrate to 500 oC. The XRD (X-ray Diffraction) analysis revealed that Cd was interstitially incorporated in the CuO lattice structure, as verified by SEM (Scanning Electron Microscopy imaging). The photoluminescence study demonstrated that increasing the Cd concentration in CuO resulted in higher emission intensity, providing valuable insights into Cu2+ and O2- energy levels. Exposing a Cd-doped CuO thin film to chlorine gas modifies the bandgap, depending on the Cd concentration. The fluctuation in the bandgap energy of copper oxide doped with cadmium indicates the chlorine gas concentration nearby. Time-resolved measurements for the I-V characteristics of the thin film revealed considerable current variation during the exposure to chlorine gas.
Twórcy
  • Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
  • Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
autor
  • Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
Bibliografia
  • 1. T. Jiang, J. Kong, Y. Wang, D. Meng, D. Wang, and M. Yu, Optical and Photocatalytic properties of Mn-doped CuO nanosheets prepared by hydrothermal method. Cryst. Res. Technol., 51(1), 58–64, 2016, doi: 10.1002/crat.201500152.
  • 2. S.D. Al Ghamdi, A. O. M. Alzahrani, M. S. Aida, and M. S. Abdel-wahab, Influence of substrate temperature and solution molarity on CuO thin films’ properties prepared by spray pyrolysis. J. Mater. Sci. Mater. Electron., 33(18), 14702–14710, Jun. 2022, doi: 10.1007/s10854-022-08390-8.
  • 3. H. Bai et al., Light-activated ultrasensitive NO2 gas sensor based on heterojunctions of CuO nanospheres/MoS2 nanosheets at room temperature. Sensors Actuators B Chem., 368, 132131, 2022, doi: https://doi.org/10.1016/j.snb.2022.132131.
  • 4. N. Wang et al., Highly sensitive and selective NO2 gas sensor fabricated from Cu2O-CuO microflowers. Sensors Actuators B Chem., 362, 131803, 2022, doi: https://doi.org/10.1016/j.snb.2022.131803.
  • 5. A. Kumar, A. K. Shringi, and M. Kumar, RF sputtered CuO anchored SnO2 for H2S gas sensor. Sensors Actuators B Chem., 370, 132417, 2022, doi: https://doi.org/10.1016/j.snb.2022.132417.
  • 6. Z. Yin et al., Multifunctional optoelectronic device based on CuO/ZnO heterojunction structure. J. Lumin., 257, 119762, 2023, doi: https://doi.org/10.1016/j.jlumin.2023.119762.
  • 7. M.A. Khan et al., Interface study of hybrid CuO nanoparticles embedded ZnO nanowires heterojunction synthesized by controlled vapor deposition approach for optoelectronic devices. Opt. Mater. (Amst)., 117, 111132, 2021, doi: https://doi.org/10.1016/j.optmat.2021.111132.
  • 8. G. Sreedevi, K. Srinivas, M. Subbarao, and S. Cole, Investigation on structural and optical properties of CuO doped CdS-Zn3(PO4)2 nanocomposite for optoelectronic devices. J. Mol. Struct., 1222, 128903, 2020, doi: https://doi.org/10.1016/j.molstruc.2020.128903.
  • 9. D. Naveena, R. Dhanabal, and A. Chandra Bose, Investigating the effect of La doped CuO thin film as absorber material for solar cell application. Opt. Mater. (Amst)., 127, 112266, 2022, doi: https://doi.org/10.1016/j.optmat.2022.112266.
  • 10. V.T. Babu et al., Role of front and back contacts in the performance of TiO2/CuO heterojunction solar cells. Mater. Today Proc., 65, 408–415, 2022, doi: https://doi.org/10.1016/j.matpr.2022.07.199.
  • 11. W. Shirbeeny and F. Talbi, Improved photon trapping by combined use of dye-synthesized and onedimensional fiber-like nanostructured CuO thin film. Optik (Stuttg), 147, 14–21, 2017, doi: 10.1016/j.ijleo.2017.08.076.
  • 12. N. Indumathi, C. Sridevi, A. Gowdhaman, and R. Ramesh, Synthesis, structural analysis, and electrochemical performance of chitosan incorporated CuO nanomaterial for supercapacitor applications. Inorg. Chem. Commun., 156, 11222, 2023, doi: https://doi.org/10.1016/j.inoche.2023.111222.
  • 13. J. Zhang, R. Huang, Z. Dong, H. Lin, and S. Han, An illumination-assisted supercapacitor of rice-like CuO nanosheet coated flexible carbon fiber. Electrochim. Acta, 430, 140789, 2022, doi: https://doi.org/10.1016/j.electacta.2022.140789.
  • 14. F.Z. Chafi, L. Bahmad, N. Hassanain, B. Fares, L. Laanab, And A. Mzerd, Characterization techniques of fe-doped cuo thin films deposited by the spray pyrolysis method. arXiv, July, 2018.
  • 15. M.H. Kabir, H. Ibrahim, S. A. Ayon, M. M. Billah, and S. Neaz, Structural, nonlinear optical and antimicrobial properties of sol-gel derived, Fe-doped CuO thin films. Heliyon, 8(9), e10609, 2022, doi: 10.1016/j.heliyon.2022.e10609.
  • 16. I. . Zgair, A. H. Omran Alkhayatt, A. A. Muhmood, and S. K. Hussain, Investigation of structure, optical and photoluminescence characteristics of Li doped CuO nanostructure thin films synthesized by SILAR method. Optik (Stuttg)., 191, June, 48–54, 2019, doi: 10.1016/j.ijleo.2019.06.008.
  • 17. S. Baturay et al., Modification of electrical and optical properties of CuO thin films by Ni doping. J. Sol-Gel Sci. Technol., 78(2), 422–429, 2016, doi: 10.1007/s10971-015-3953-4.
  • 18. M. Nesa, M. Sharmin, K. S. Hossain, and A. H. Bhuiyan, Structural, morphological, optical and electrical properties of spray deposited zinc doped copper oxide thin films. J. Mater. Sci. Mater. Electron., vol. 28, no. 17, pp. 12523–12534, 2017, doi: 10.1007/s10854-017-7075-3.
  • 19. R. Rahaman, M. Sharmin, and J. Podder, Band gap tuning and p to n-type transition in Mn-doped CuO nanostructured thin films. J. Semicond., 43(1), 2022, doi: 10.1088/1674-4926/43/1/012801.
  • 20. Y. Wang, T. Jiang, D. Meng, D. Wang, and M. Yu, “Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method,” Appl. Surf. Sci., 355, 191–196, Nov. 2015, doi: 10.1016/j.apsusc.2015.07.122.
  • 21. D. Wang, Y. Wang, T. Jiang, H. Jia, and M. Yu, The preparation of M (M: Mn2+, Cd2+, Zn2+) -doped CuO nanostructures via the hydrothermal method and their properties. J. Mater. Sci. Mater. Electron., 27(2), 2138–2145, Feb. 2016, doi: 10.1007/s10854-015-4003-2.
  • 22. D. Sivayogam, I. Kartharinal Punithavathi, S. Johnson Jayakumar, and N. Mahendran, Structural, optical and electrical properties of Cd doped CuO nanoparticles obtained by simple sol gel method. Mater. Today Proc., 49, 2752–2757, 2021, doi: 10.1016/j.matpr.2021.09.291.
  • 23. S. Ramya, R. Gobi, N. Shanmugam, G. Viruthagiri, and N. Kannadasan, Investigation on the structural, optical, morphological and magnetic properties of undoped and Cd doped CuO nanoflakes. J. Mater. Sci. Mater. Electron., 27(1), 40–48, 2016, doi: 10.1007/s10854-015-3714-8.
  • 24. M.H. Babu, J. Podder, B. C. Dev, and M. Sharmin, P to n-type transition with wide blue shift optical band gap of spray synthesized Cd doped CuO thin films for optoelectronic device applications. Surfaces and Interfaces, 19, 100459, 2020, doi: 10.1016/j.surfin.2020.100459.
  • 25. S. Kose, E. Ketenci, V. Bilgin, F. Atay, and I. Akyuz, Some physical properties of in doped copper oxide films produced by ultrasonic spray pyrolysi. Curr. Appl. Phys., 12(3), 890–895, 2012, doi: 10.1016/j.cap.2011.12.004.
  • 26. S.K. Shinde et al., Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance. J. Electroanal. Chem., 850, 113433, 2019, doi: 10.1016/j.jelechem.2019.113433.
  • 27. V. Krasinskyi, L. Dulebova, I. Gajdos, O. Krasinska, and T. Jachowicz, Study of crystalline and thermal properties of nanocomposites based on polyamide-6 and modified montmorillonite. Adv. Sci. Technol. Res. J., 17(6), 88–97, Dec. 2023, doi: 10.12913/22998624/174180.
  • 28. M. Sarwar et al., Crystal lattice damage and recovery of rare-earth implanted wide bandgap oxides. Adv. Sci. Technol. Res. J., 16(5), 147–154, 2022, doi: 10.12913/22998624/153942.
  • 29. M. Pashechko, O. Kharchenk, V. Shcheptov, K. Lenik, and Y. Gladkiy, Features of Formation Stress State of Amorphized Detonation Coatings of the Zr-Al-B Systems. Adv. Sci. Technol. Res. J., 13(2), 46–50, 2019, doi: 10.12913/22998624/106161.
  • 30. A.G. Shtukenberg, M. D. Ward, and B. Kahr, Crystal growth inhibition by impurity stoppers, now. J. Cryst. Growth, 597, 126839, 2022, doi: 10.1016/j.jcrysgro.2022.126839.
  • 31. R. Tran et al., Surface energies of elemental crystals. Sci. Data, 3(1), 160080, 2016, doi: 10.1038/sdata.2016.80.
  • 32. J.J. Gilman, Direct Measurements of the Surface Energies of Crystals. J. Appl. Phys., 31(12), 22082218, Dec. 1960, doi: 10.1063/1.1735524.
  • 33. Z. Suo, J. Dai, S. Gao, and H. Gao, Effect of transition metals (Sc, Ti, V, Cr and Mn) doping on electronic structure and optical properties of CdS. Results Phys., 17, 103058, 2020, doi: 10.1016/j.rinp.2020.103058.
  • 34. C. Anastasescu et al., Defect-related light absorption, photoluminiscence and photocatalytic activity of SiO2 with tubular morphology. Sol. Energy Mater. Sol. Cells, 59, 325–335, 2017, doi: 10.1016/j.solmat.2016.09.032.
  • 35. A.G. Shenstone, The third spectrum of copper (cu III). J. Res. Natl. Bur. Stand. Sect. A Phys. Chem., 79A(3), 497, 1975, doi: 10.6028/jres.079A.014.
  • 36. D. Luo, A.K. Pradhan, H.E. Saraph, P.J. Storey, and Y.Yu, Atomic data for opacity calculations. X. Oscillator strengths and photoionisation cross sections for O III. J. Phys. B At. Mol. Opt. Phys., 22(3), 389–406, 1989, doi: 10.1088/0953-4075/22/3/006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fe445d1-8e90-43ed-922f-1b21ad692f38
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.