PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza możliwości pozyskania pierwiastków ziem rzadkich z węgli kamiennych i popiołów lotnych z elektrowni

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Analysis of the possibilities of rare earth elements obtaining from coal and fly ash
Języki publikacji
PL
Abstrakty
PL
Pierwiastki ziem rzadkich nazywane powszechnie REE (Rare Earth Elements) to grupa 15 lantanowców od lantanu do lutenu, a także skand i itr, które charakteryzują się podobnymi właściwościami chemicznymi. Stanowią surowce uznane przez Unię Europejską za jedne z listy 14 surowców krytycznych, o znaczeniu strategicznym dla rozwoju nowoczesnych wysoko zawansowanych technologii. Światowe wydobycie REE kształtuje się aktualnie na poziomie 139 tys. Mg, a głównym producentem są Chiny, które dostarczają około 93% światowego zapotrzebowania na surowce ziem rzadkich. W związku z sytuacją na światowym rynku metali ziem rzadkich (REE), w ostatnich latach rozpoczęto wiele projektów w celu poszukiwania nowych źródeł REE. W artykule omówiono znaczenie ziem rzadkich w gospodarce światowej. Głównym celem pracy było określenie potencjału i form występowania pierwiastków ziem rzadkich w węglach kamiennych i odpadach z energetycznego wykorzystania węgla, jako alternatywnego źródła ich pozyskania. Na podstawie analizy literatury oraz przeprowadzonych badań własnych wytypowanych próbek polskich węgli kamiennych i popiołów z elektrowni, przedstawiono zawartości pierwiastków ziem rzadkich REE w wybranych węglach i popiołach lotnych z elektrowni na świecie i w Polsce. Średnia zawartość REE w węglach na świecie wynosi 60 ppm natomiast w badanych węglach polskich z KWK Jankowice REE wynosiła 77 ppm, dla pozostałych węgli uzyskano niższe zawartości od 8 do 40 ppm. Ponadto praca przedstawia perspektywiczne światowe zasoby tych pierwiastków, które mogą stać się ich cennym, alternatywnym źródłem w ciągu najbliższych lat.
EN
Rare earth elements commonly called REE (Rare Earth Elements) it is a group of 15 Lanthanides, from lanthanum to luten, and yttrium, and scandium which have similar chemical properties. Rare earth elements are the materials considered by the European Union as one of a list of 14 critical raw materials of strategic importance for the development of new highly advanced technology.World production of shaped REE is currently at the level of 139 thousand Mg, and the main producer is China, which supplies about 93% of the global demand for rare earth materials. Considering the situation on the worldmarket of rare earth elements (REE) in recent years,many projects started to look for new sources of REE. This article discusses the importance of rare earths in the world economy. The main objective of this study was to determine the potential and forms of occurrence of rare earth elements in hard coals and waste from energy use of coal as an alternative source of acquisition. On the basis of literature overview and own research on selected samples of Polish hard coals and ash from power stations this work shows the content of rare earth elements in some coals and power plant fly ashes in Poland and around the world. The average content of coals REE in the world is 60 ppm while in researched Polish coals from the coal mine Jankowice REE is 77 ppm, for the other coals a lower content from 8 ppm to 40ppm was obtained. Moreover, the world’s perspective resources of these elements, which may become valuable resource in the next few years, are presented.
Twórcy
  • Główny Instytut Górnictwa w Katowicach, Zakład Ochrony Terenów Poprzemysłowych i Gospodarki Odpadami, Katowice
autor
  • Główny Instytut Górnictwa w Katowicach, Zakład Ochrony Terenów Poprzemysłowych i Gospodarki Odpadami, Katowice
Bibliografia
  • [1] Alonso E. i in. 2012 – Alonso E., Sherman A.M., Wallington T.J., Everson M.P., Field F.R., Roth R., Kirchain R.E., 2012 – Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies, Environ. Sci. Technol., 46 (6), s. 3406–3414.
  • [2] Birk D.,White J.C., 1991 – Rare earth elements in bituminous coals and underclays of the Sydney basin, Nova Scotia – elements sites, distribution, mineralogy; International Journal of Coal Geology , 19, s. 219–251.
  • [3] Brownfield i in.1995 – Brownfield M.E., Affolter R.H., Stricker G.D., Hildebrand R.T., 1995 – High chromium contents in tertiary coal deposits of Northwestern Washington – a key to their depositional history; International Journal of Coal Geology , 27(2–4), s. 153–169.
  • [4] Castor B., Hedrick J.B., 2006 – Rare Earth Elements. Industrial Minerals and Rocks. Society for Mining, Metallurgy and Exploration, s. 769–792.
  • [5] Całus-Moszko J., 2012 – Działalność statutowa (2012): Występowanie metali ziem rzadkich w warunkach polskich węgli kamiennych.
  • [6] Charewicz W., 1990 – Pierwiastki ziem rzadkich. Surowce i technologie, zastosowanie, WNT, Warszawa.
  • [7] Coleman i in. 1993 – Coleman L., Bragg L.B., Finkelman R.B., 1993 – Distribution and mode of occurrence of selenium in US coals; Environmental Geochemistry and Health, 15(4), s. 215–227.
  • [8] Crowley i in. 1993 – Crowley S.S., Ruppert L.F., Belkin H.E., Santon R.W., Moore T.A., 1993 – Factors Affecting The Geochemistry Of A Thick, Subbituminous Coal Bed In The Powder River Basin – VOLCANIC, DETRITAL, AND PEAT-FORMING PROCESSES; ORGANIC GEOCHEMISTRY, 20(6), s. 843–853.
  • [9] Dai i in. 2006 – Dai S.F., Ren D.Y., Chou C.L., Li S.S., Jiang Y.F., 2006 – Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. International Journal of Coal Geology, 66, s. 253–270.
  • [10] Dai i in. 2008 – Dai S., Tian L., Chou C., 2008 – Mineralogical and compositional characteristics of Late Permian coals from an area of high lung cancer rate in Xuan Wei, Yunnan, China: Occurrence and origin of quartz and chamosite. International Journal of Coal Geology, 76(4), s. 318–327.
  • [11] Dai i in. 2010 – Dai S., Wang X., Chen W., 2010 – A high-pyrite semianthracite of Late Permian age in the Songzao Coalfield, south western China: Mineralogical and geochemical relations with underlying mafic tuffs. International Journal of Coal Geology, 83(4), s. 430–445.
  • [12] Dai i in. 2011 – Dai S.,Wang, X., Zhou Y., 2011 – Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China; Chemical Geology, 282(1–2), s. 29–44.
  • [13] Dai i in. 2012 – Dai S.F., Zou J., Yaofa J.,Ward C., 2012 – Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. International Journal of Coal Geology, 94, s. 250–270.
  • [14] Dai i in. 2012 – Dai S., Ren D., Chou C.L., Finkelman R.B., Seredin V.V., Zhou Y., 2012 – Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, s. 3–21.
  • [15] Dai i in. 2012 – Dai S.,Wang X., Seredin V.V., Hower J.C.,Ward C.R., O’Keefe J.M.K., Huang W., Li T., Li X., Liu H., Xue W., Zhao L., 2012 – Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. International Journal of Coal Geology, 90, s. 72–99.
  • [16] Eskenazy G.M., 1987 – Rare-earth elements in a sampled coal from pirin deposit. Bulgaria. International Journal of Coal Geology, 7, s. 301–314.
  • [17] Eskenazy G.M., 1987a – Rare earth elements and yttrium in lithotypes of Bulgarian coals. Org. Geochem., 11(2), s. 83–89.
  • [18] Eskenazy G.M., 1999 – Aspects of the geochemistry of rare earth elements in coal: an experimental approach. International Journal of Coal Geology, 38, s. 285–295.
  • [19] Finkelman R.B., 1994 – Modes of occurrence of the potentially hazardous elements in coal levels of confidence. Fuel processing technology, 39, s. 21–34.
  • [20] Hanak i in. 2011 – Hanak B., Kokowska-Pawłowska M., Nowak J., 2011 – Pierwiastki śladowe w łupkach węglowych z pokładu 405. Górnictwo i Geologia, 6 (4), s. 27–38.
  • [21] Hower i in. 1999 – Hower J.C., Ruppert L.F., Eble C.F., 1999 – Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed. Eastern Kentucky. International Journal of Coal Geology, 39, s. 141–153.
  • [22] Hycnar J., 1987 – Metody wydzielania koncentratów metali z popiołów elektrownianych. Fizykochemiczne Problemy Mineralurgii, 19, s. 243–257.
  • [23] Kato i in. 2011 – Kato Y., Fujinaga K., Nakamura K., Takaya Y., Kitamura K., Ohta J., Toda R., Nakashima T., Iwamori , H., 2011 – Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, 4 (8), s. 535–539.
  • [24] Ketris M.P., Yudovich Y.E., 2009 – Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals.; International Journal of Coal Geology, 78(2), s. 135–148.
  • [25] Masto i in. 2011 – Masto R.E., Ram L.C., Verma S.K., 2011 – Rare earth elements in Soils of Jahria Coal Field Impacts of opencast coal mine and mine fire on the trace elements’ content of the surrounding soil vis-a-vis human health risk. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY, 93(4), s. 223–237.
  • [26] Moore F., Esmaeili A., 2012 – Mineralogy and geochemistry of the coals from Karmozd and Kiasar coal mines. Mazandran province, Iran, International Journal of Coal Geology 96–97, s. 9–21.
  • [27] Morga R., 2007 – Struktura zmienności fosforu w eksploatowanych pokładach węgla kamiennego KWK Pniówek. Gospodarka Surowcami Mineralnymi 23(1), s. 29–48.
  • [28] Olkuski i in. 2010 – Olkuski T., Ozga-Blaschke U., Stala-Szlugaj K., 2010 – Występowanie fosforu w węglu kamiennym. Gospodarka Surowcami Mineralnymi 26(1).
  • [29] Palmer i in. 1995 – Palmer C.A., Finkelman R.B., Krasnow M.R., Eble C.F., 1995 – Laboratory leaching of environmentally sensitive trace-elements from fly-ash and bottom ash samples. Abstracts of papers of the American Chemical Society 210(75).
  • [30] Parzentny H., 2008 – Variability of La, Sc, Th and U contents in bitominous coals of formation in coal basin (LCB). TRANSACTIONS of the VSB Technical University of Ostrava Civil Engineering Series 2, s. 203–212.
  • [31] Pollock i in. 2000 – Pollock S.M., Goodarz i F., Riediger C.L., 2000 – Mineralogical and elemental variation of coal from Alberta. Canada: an example from the No. 2 seam, Genesee Mine, International Journal of Coal Geology 43(1–1), s. 259–286.
  • [32] Rożkowska A., Parzentny H., 1990 – Zawartość fosforu w węglach kamiennych Górnośląskiego Zagłębia Węglowego. Kwartalnik Geologiczny t. 34(4), s. 611–622.
  • [33] Seredin V.V., Shpirt M.Y., 1995 – Metalliferous coals: A new potential source of valuable trace elements as by-products. Coal Science and technology 24, s. 1649–1652.
  • [34] Seredin V.V., 1996 – Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology 30, s. 101–129.
  • [35] Smakowski T.J., 2011 – Surowce mineralne – krytyczne czy deficytowe dla gospodarki UE i Polski. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN nr 81, s. 59–68.
  • [36] Smółka-Danielowska D., 2010 – Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland – Upper Silesian Industrial Region. Journal of Environmental Radioactivity 101/11, s. 965–968.
  • [37] Taylor B.E., Bence A.E., 1985 – Rare-earth element systematics of west-shasta metavolcanic roks – petrogenesis and hydrothermal alterioN. Economic Geology 80(8), s. 1730–1743.
  • [38] Ward i in. 1999 – Ward C.R., Spears D.A., Booth C.A., Staton I., Gurba L.W., 1999 – Mineral matter and trace elements in coals of the Gunnedah basin, new South Wales, Australia. International Journal of Coal Geology 40, s. 281–308.
  • [39] Querol i in. 1994 – Querol X., Turiel J.L.F., Soler A.L., 1994 – The Behavior of Mineral Matter During Combustion of Spanish Subbituminous and Brown Coals. Mineralogical Magazine 58(390), s. 119–133.
  • [40] Querol i in. 1995 – Querol X., Fernandez-Turiel J.L., Lopez-Soler A., 1995 – Trace elements in coal and their behaviour during combustion in large power station. Fuel 74 (3), s. 331–343.
  • [41] Vinkurov i in. 2002 – Vinokurov S.E., Koporulin V.I., Stukalova I.E., 2002 – Rare earth elements in coal-bearing deposits: Distribution Features and geochemical sigifance. Litology and Mineral Resources 37, s. 447–553.
  • [42] Yang i in. 2012 – Yang M., Liu G.J., Sun R.Y., Chou C.L., Zheng L.G., 2012 – Characterization of intrusive rocks and REE geochemistry of coals from the Zhuji Coal Mine, Huainan Coalfield, Anhui, China. International Journal of Coal Geology 94, s. 283–295.
  • [43] Yossifova i in. 2011 – Yossifova M.G., Eskenazy G.M., Valceva S.P., 2011 – Petrology, mineralogy, and geochemistry of submarine coals and petrified forest in the Sozopol Bay, Bulgaria. International Journal of Coal Geology 87, s. 212–225.
  • [44] Zhang i in. 1999 – Zhang J.Y., Ren D.Y., Xu D.W., 1999 – Distribution of arsenic and mercury in Triassic coals from Longtoushan syncline, southwestern Guizhou, P. R. China. Prospect for coal science in 21st century Vols I, II, s. 153–156.
  • [45] Zheng i in. 2007 – Zheng L., Liu G., Chou Ch.L., Qi C., Zhang Y., 2007 – Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China. Journal of Asian Earth Sciences 31, s. 167–176.
  • [46] Zhou i in. 2000 – Zhou Y.P., Bohor B.F., Ren Y.L., 2000 – Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Provinces, China. International Journal of Coal Geology 44(3–4), s. 305–324.
  • [47] Xu i in. 2004 – Xu C., Zhang H., Huang Z.L., Liu C.Q., Qi L., Li W.B., Guan T., 2004 – Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China. Evidence from Pb isotope geochemistry. Geochemical Journal, 31(1), s. 67–76.
  • [48] 2010 Minerals Yearbook, 2012 – Rare earths (advance release).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fe3be7e-0c9b-4705-bec0-8422f4412252
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.