PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of geospatial areas using electrical resistance tomography

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Analiza obszarów geoprzestrzennych z wykorzystaniem elektrycznej tomografii rezystancyjnej
Języki publikacji
EN
Abstrakty
EN
The article presents an analysis of geospatial areas using electrical resistive tomography. Tomography can be used to calculate conductivity by measuring potential differences in a flood embankment. The problem is that each material has unique conductivity. This method collects data on the edge of the tested area, by which the conductivity distribution in the tested object is determined. An inverse problem has been resolved to visualize the properties of the object being tested. The optimization of the objective function uses so-called regularization based on total variation regularization. The best results were obtained by the Gauss-Newton method with Laplace regularization.
PL
W artykule przedstawiono analizę obszarów geoprzestrzennych z wykorzystaniem elektrycznej tomografii rezystancyjnej. Tomografię można wykorzystać do obliczenia przewodności poprzez pomiar różnic potencjałów w wale przeciwpowodziowych. Problem polega na tym, że każdy materiał ma niepowtarzalną przewodność. Ta metoda zbiera dane na brzegu badanego obszaru, za pomocą których określa się rozkład przewodności w badanym obiekcie. Rozwiązano problem odwrotny w celu wizualizacji właściwości testowanego obiektu. W optymalizacji funkcji celu zastosowano tak zwaną regularyzację opartą na regularyzacji całkowitej zmienności. Najlepsze wyniki uzyskano metodą Gaussa-Newtona z regularyzacją Laplace'a.
Rocznik
Strony
40--43
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • Research & Development Centre Netrix S.A.
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
autor
  • University of Economics and Innovation, Projektowa 4, Lublin, Poland
Bibliografia
  • [1] Rymarczyk T., Tchorzewski P., Niderla K., Adamkiewicz P., Sikora J., Electrical tomography system for acquisition and monitoring of geospatial areas, 2019 Applications of Electromagnetics in Modern Engineering and Medicine, PTZE 2019, 2019, 188-192
  • [2] Dušek J., Hladký D., Mikulka J., Electrical Impedance Tomography Methods and Algorithms Processed with a GPU, In PIERS Proceedings, 2017, 1710-1714.
  • [3] Fiala P., Drexler P., Nešpor D., Szabó Z., Mikulka J., Polívka J., The Evaluation of Noise Spectroscopy Tests, ENTROPY, 18 (2016), No. 12, 1-16.
  • [4] Goetzke-Pala A., Hoła J., Influence of burnt clay brick salinity on moisture content evaluated by non-destructive electric methods. Archives of Civil and Mechanical Engineering, 16 (2016), No. 1, 101-111.
  • [5] Goetzke-Pala A., Hoła A., Sadowski Ł., A non-destructive method of the evaluation of the moisture in saline brick walls using artificial neural networks. Archives of Civil and Mechanical Engineering, 18 (2018), No 4, 1729-1742.
  • [6] Krawczyk A., Korzeniewska E., Łada-Tondyra, E. Magnetophosphenes - History and contemporary implications, Przeglad Elektrotechniczny, 94 (2018), No 1, 61-64.
  • [7] Korzeniewska E., Szczesny A., Parasitic parameters of thin film structures created on flexible substrates in PVD process , Microelectronic Engineering, 193 (2018), 62-64.
  • [8] Lopato P., Chady T., Sikora R., Ziolkowski M., Full wave numerical modelling of terahertz systems for nondestructive evaluation of dielectric structures, 32 (2013), No. 3. 736 - 749.
  • [9] Psuj G., Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements, Sensors, 18 (2018), No. 1, 292.
  • [10] Szczęsny A., Korzeniewska E., Selection of the method for the earthing resistance measurement, Przegląd Elektrotechniczny, 94 (2018), No. 12, 178-181.
  • [11] Ungureanu C., Priceputu A., Bugea A., Chirică A., Use of electric resistivity tomography (ERT) for detecting underground voids on highly anthropized urban construction sites, Procedia Engineering, 209 (2017), 202-209.
  • [12] Valis D., Mazurkiewicz D., Application of selected Levy processes for degradation modelling of long range mine belt using real-time data, Archives of Civil and Mechanical Engineering, 18 (2018) , No. 4, 1430-1440.
  • [13] Valis D., Mazurkiewicz D., Forbelska M., Modelling of a Transport Belt Degradation Using State Space Model, Conference: IEEE International Conference on Industrial Engineering and Engineering Management (IEEE IEEM)Location: Singapore, Dec. 10-13, 2017, Book Series: International Conference on Industrial Engineering and Engineering Management IEEM, 2017, 949-953.
  • [14] Ren S., Soleimani M., Xu Y., Dong F., Inclusion boundary reconstruction and sensitivity analysis in electrical impedance tomography, Inverse Problems in Science and Engineering, 26 (2018), No. 7, 1037-1061
  • [15] Kozłowski E., Mazurkiewicz D., Żabiński T., Prucnal S., Sęp J., Assessment model of cutting tool condition for real-time supervision system, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No 4, 679-685
  • [16] Vališ D, Hasilová K., Forbelská M, Vintr Z, Reliability modelling and analysis of water distribution network based on backpropagation recursive processes with real field data, Measurement 149 (2020), 107026
  • [17] Goclawski J., Korzeniewska E., Sekulska-Nalewajko J. et al., Extraction of the Polyurethane Layer in Textile Composites for Textronics Applications Using Optical Coherence Tomography, POLYMERS, 10 (2018), No. 5, 469
  • [18] Galazka-Czarnecka, I.; Korzeniewska E., Czarnecki A. et al., Evaluation of Quality of Eggs from Hens Kept in Caged and Free-Range Systems Using Traditional Methods and UltraPRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 96 NR 2/2020 43 Weak Luminescence, Applied sciences-basel, 9 (2019), No. 12, 2430.
  • [19] Adler A., Lionheart W., Uses and abuses of EIDORS: An extensible software base for EIT, Phys. Meas., 27 (2006), 25- 42.
  • [20] Babout L., Grudzień K., Wiącek J., Niedostatkiewicz M., Karpiński B., Szkodo M., Selection of material for X-ray tomography analysis and DEM simulations: comparison between granular materials of biological and non-biological origins, Granul. Matter, 20 (2018), No. 3, 38.
  • [21] Banasiak R., Wajman R., Jaworski T., Fiderek P., Fidos H., Nowakowski J., Study on two-phase flow regime visualization and identification using 3D electrical capacitance tomography and fuzzy-logic classification, International Journal of Multiphase Flow, 58 (2014), 1-14.
  • [22] Beck M. S., Byars M., Dyakowski T., Waterfall R., He R., Wang S. J., Yang W. Q., Principles and Industrial Applications of Electrical Capacitance Tomography, Measurement and Control, September, 30 (1997), No. 7.
  • [23] Borcea L, Electrical impedance tomography, Inverse Problems, 18 (2002), 99-136.
  • [24] Chaniecki, Z., Romanowski A., Nowakowski J., Niedostatkiewicz M., Application of twin-plane ECT sensor for identification of the internal imperfections inside concrete beams Grudzien, IEEE Instrumentation and Measurement Technology Conference, 2016, 7520512.
  • [25] Garbaa H., Jackowska-Strumiłło L., Grudzień K., Romanowski A., Application of electrical capacitance tomography and artificial neural networks to rapid estimation of cylindrical shape parameters of industrial flow structure, Arch. Electr. Eng., 65 (2016), No. 4, 657-669.
  • [26] Grudzien K., Romanowski A., Chaniecki Z., Niedostatkiewicz M., Sankowski D., Description of the silo flow and bulk solid pulsation detection using ECT, Flow Measurement and Instrumentation, 21 (2010), No. 3, 198-206.
  • [27] Holder D., Introduction to biomedical electrical impedance tomography Electrical Impedance Tomography Methods, History and Applications, Bristol, Institute of Physics, 2005.
  • [28] Kryszyn J., Smolik W., Toolbox for 3D modelling and image reconstruction in electrical capacitance tomography, Informatics Control Meas. Econ. Environ. Prot., 2017.
  • [29] Kryszyn J., Smolik W., Toolbox for 3d modelling and image reconstruction in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 137-145.
  • [30] Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D., Acceleration of image reconstruction process in the electrical capacitance tomography 3D in heterogeneous, multi-GPU system, Informatics Control Meas. Econ. Environ. Prot., 7 (2017), No. 1, 37-41.
  • [31] Majchrowicz M., Kapusta P., Jackowska-Strumiłło L., Sankowski D., Acceleration of image reconstruction process in the electrical capacitance tomography 3d in heterogeneous, multi-gpu system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 37-41.
  • [32] Metwaly M., lFouzan F., Application of 2-D geoelectrical resistivity tomography for subsurface cavity detection in the eastern part of Saudi Arabia, Geoscience Frontiers, 4 (2013), No. 4, 469-476.
  • [33] Nowakowski J., Ostalczyk P., Sankowski D., Application of fractional calculus for modelling of two-phase gas/liquid flow system, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 42-45.
  • [34] Osinowo O., Falufosi M., 3D Electrical Resistivity Imaging (ERI) for subsurface evaluation in pre-engineering construction site investigation, NRIAG Journal of Astronomy and Geophysics, 7 (2018), No 2, 309-317.
  • [35] Romanowski A., Big Data-Driven Contextual Processing Methods for Electrical Capacitance Tomography, in IEEE Transactions on Industrial Informatics, 15 (2019), No. 3, 1609- 1618.
  • [36] Romanowski A., Contextual Processing of Electrical Capacitance Tomography Measurement Data for Temporal Modeling of Pneumatic Conveying Process, 2018 Federated Conference on Computer Science and Information Systems (FedCSIS), IEEE, 2018, 283-286.
  • [37] Rymarczyk T, Kłosowski G. Innovative methods of neural reconstruction for tomographic images in maintenance of tank industrial reactors. Eksploatacja i Niezawodnosc - Maintenance and Reliability, 21 (2019); No. 2, 261-267
  • [38] Rymarczyk, T.; Kozłowski, E.; Kłosowski, G.; Niderla, K. Logistic Regression for Machine Learning in Process Tomography, Sensors, 19 (2019), 3400.
  • [39] Kłosowski G., Rymarczyk T., Gola A., Increasing the reliability of flood embankments with neural imaging method. Applied Sciences, 8 (2018), No. 9, 1457.
  • [40] Rymarczyk T., Adamkiewicz P., Polakowski K., Sikora J., Effective ultrasound and radio tomography imaging algorithm for two-dimensional problems, Przegląd Elektrotechniczny, 94 (2018), No 6, 62-69
  • [41] Rymarczyk T., Szumowski K., Adamkiewicz P., Tchórzewski P., Sikora J., Moisture Wall Inspection Using Electrical Tomography Measurements, Przegląd Elektrotechniczny, 94 (2018), No 94, 97-100
  • [42] Duda K., Adamkiewicz P., Rymarczyk T., Niderla K., Nondestructive Method to Examine Brick Wall Dampness, International Interdisciplinary PhD Workshop Location: Brno, Czech Republic Date: SEP 12-15, 2016, 68-71
  • [43] Soleimani M., Mitchell CN, Banasiak R., Wajman R., Adler A., Four-dimensional electrical capacitance tomography imaging using experimental data, Progress In Electromagnetics Research, 90 (2009), 171-186.
  • [44] Smolik W., Kryszyn J., Olszewski T., Szabatin R., Methods of small capacitance measurement in electrical capacitance tomography, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska (IAPGOŚ) , 7 (2017), No. 1, 105-110.
  • [45] Wajman R., Fiderek P., Fidos H., Sankowski D., Banasiak R., Metrological evaluation of a 3D electrical capacitance tomography measurement system for two-phase flow fraction determination, Measurement Science and Technology, 24 (2013), No. 6, 065302.
  • [46] Kowalska A., Banasiak R., Romanowski A., Sankowski D., Article 3D-Printed Multilayer Sensor Structure for Electrical Capacitance Tomography, 19 (2019), Sensors, 3416
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fdf625b-2c01-4709-9225-c4069a3ab7f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.