Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
International Conference on Development and Applications of Nuclear Technologies NUTECH 2023 (22-24 September 2023 ; Krakow, Poland)
Języki publikacji
Abstrakty
In recent years, the use of low-energy electrons in various ecological and biotechnological applications has become increasingly relevant. One important application is the treatment of wastewater, wherein highly reactive species produced by water irradiation are used to oxidize pollutants. Low-energy electron irradiation has several advantages, such as minimal demands on radiation protection and electron beam (EB) source dimensions. However, to play into the main advantages of this technology and keep it economically viable, it is necessary to keep the absorbed dose as low as possible. This calls for a liquid dosimeter with sensitivity in the single digit kGy range. An extract from natural Hibiscus sabdariffa (Roselle) has been reported to show a radiochromic effect in this dose range. In the present work, Roselle dosimeter solutions were closely investigated and optimized to characterize a new module for EB wastewater treatment. Upon EB irradiation, the dosimeter solution demonstrated a dose-dependent fading in color, making it useful in the 0.3–7.5 kGy dose range.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--80
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
autor
- Fraunhofer Institute for Electron Beam and Plasma Technology FEP, Dresden, Germany
Bibliografia
- 1. Szabó, L., Szabó, J., Illés, E., Kovács, A., Belák, A., Mohácsi-Farkas, C., Takács, E., & Wojnárovits, L. (2017). Electron-beam treatment for tackling the escalating problems of antibiotic resistance: Eliminating the antimicrobial activity of wastewater matrices originating from erythromycin. Chem. Eng. J., 321, 314–324. DOI: 10.1016/j.cej.2017.03.114.
- 2. Capodaglio, A. (2019). Contaminants of emerging concern removal by high-energy oxidation-reduction processes: State of the art. Appl. Sci., 9(21), 4562. DOI: 10.3390/app9214562.
- 3. Coleman, H. M., Abdullah, M. I., Eggins, B. R., & Palmer, F. L. (2005). Photocatalytic degradation of 17β-oestradiol, oestriol and 17α -ethynyloestradiol in water monitored using fluorescence spectroscopy. Appl. Catal. B-Environ., 55(1), 23–30. DOI: 10.1016/j.apcatb.2004.07.004.
- 4. Bluhm, H., Han, B., Chmielewski, A. G., von Dobeneck, D., Gohs, U., Gstöttner, J., Mattausch, G., Morgner, H., Koops, H. W. P., Reichmann, A., Röder, O., Schultz, S. W., Wenzel, B., & Zywitzki, O. (2008). Electron-beam devices for materials processing and analysis. In J. A. Eichmeier & M. Thumm (Eds.), Vacuum electronics – components and devices (pp. 155–224). Berlin, Heidelberg, New York: Springer Science & Business Media.
- 5. Schopf, S., Gotzmann, G., Dietze, M., Gerschke, S., Kenner, L., & König, U. (2022). Investigations into the suitability of bacterial suspensions as biological indicators for low-energy electron irradiation. Front. Immunol., 13, 814767. DOI: 10.3389/fimmu.2022.814767.
- 6. Fertey, J., Bayer, L., Grunwald, T., Pohl, A., Beckmann, J., Gotzmann, G., Portillo Casado, J., Schönfelder, J., Rögner, F. -H., Wetzel, C., Thoma, M., Bailer, S. M., Hiller, E., Rupp, S., & Ulbert, S. (2016). Pathogens inactivated by low-energy-electron irradiation maintain antigenic properties and induce protective immune responses. Viruses, 8(11), 319. DOI: 10.3390/v8110319.
- 7. Jacobs, G. P. (1998). A review on the effects of ionizing radiation on blood and blood components. Radiat. Phys. Chem., 53(5), 511–523. DOI: 10.1016/S0969-806X(98)00185-6.
- 8. McLaughlin, W. L., Miller, A., Kovács, A., & Mehta, K. K. (2011). Dosimetry methods. In A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas & F. Rösch (Eds.), Handbook of nuclear chemistry (2nd ed.) (Vol. 5, pp. 2287–2318). Boston: Springer Science & Business Media.
- 9. Handayani, I. N., & Imawan, C. (2018). Liquid radiochromic from Roselle dye extract for gamma-ray dosimetry applications at medium dose levels. In The 3rd International Seminar on Sensors, Instrumentation, Measurement and Metrology, 4–5 December 2018 (pp. 64–67). Depok, Indonesia: IEEE.
- 10. Shahid, M., Islam, S. ul, & Mohammad, F. (2013). Recent advancements in natural dye applications: a review. J. Clean Prod., 53, 310–331. DOI: 10.1016/j.jclepro.2013.03.031.
- 11. Ramamoorthy, R., Radha, N., Maheswari, G., Anandan, S., Manoharan, S., & Williams, R. V. (2016). Betalain and anthocyanin dye-sensitized solar cells. J. Appl. Electrochem., 46(9), 929–941. DOI: 10.1007/s10800-016-0974-9.
- 12. Suhaimi, S., Nasri, N. M., Wahab, S., Ismail, N. S., Shahimin, M. M., & Sauli, Z. (2020). Ultraviolet-80 L. L. Schaap et al. visible absorbance analysis on solvent dependent effect of tropical plant anthocyanin extraction for dye-sensitized solar cells. AIP Conf. Proc., 2203(1), 020054. DOI: 10.1063/1.5142146.
- 13. Akram, N. G., Bhutto, W. A., & Sharif, I. N. (2016). A study on the response of natural dye to gamma radiation as a dosimeter. Afr. J. Chem., 3(3), 182–187.
- 14. Dangles, O., & Fenger, J. -A. (2018). The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules, 23(8), 1970. DOI: 10.3390/molecules23081970.
- 15. Março, P. H., Poppi, R. J., Scarminio, I. S., & Tauler, R. (2011). Investigation of the pH effect and UV radiation on kinetic degradation of anthocyanin mixtures extracted from Hibiscus acetosella. Food Chem., 125(3), 1020–1027. DOI: 10.1016/j.foodchem.2010.10.005.
- 16. Indah, N. H., Listyarini, A., & Imawan, C. (2020). Natural red dyes from Hibiscus sabdariffa L.calyxes extract for gamma-r ays detector. J. Phys.-Conf. Ser., 1428(1), 012061. DOI: 10.1088/1742-6596/1428/1/012061.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fd78f8b-1fa7-488c-a6e7-7588c2d2b99f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.