Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Every collection of n (arbitrary-oriented) unit squares can be packed translatively into any equilateral triangle of side length 2.3755 ∙ √n.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
452--461
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Institute of Mathematics and Physics, University of Technology and Life Sciences, Al. Prof. S. Kaliskiego 7, 85-789 Bydgoszcz, Poland
Bibliografia
- [1] H. T. Croft. K. J. Falconer, R. K. Guy, Unsolved Problems in Geometry, Springer Verlag, Berlin, 1991, 107–111.
- [2] G. Fejes-Tóth, Packing and covering, in: Handbook of Discrete and Computational Geometry, J. E. Goodman, J. O’Rourke, eds., 1997, 19–41.
- [3] E. Friedman, Packing unit squares in squares: a survey and new results, Electron. J. Combin., Dynamic Survey 7, 2000.
- [4] F. Göbel, Geometrical packing and covering problems, in: Packing and Covering in Combinatorics, A. Schrijver, ed., Math. Centrum Tracts 106 (1979), 179–199.
- [5] H. Groemer, Covering and packing properties of bounded sequences of convex sets, Mathematica 29 (1982), 18–31.
- [6] J. Januszewski, Translative packing of unit squares into squares, International Journal of Mathematics and Mathematical Sciences, Volume 2012 (2012), Article ID 613201, 7 pages, doi:10.1155/2012/613201.
- [7] J. Januszewski, Translative covering by unit squares, Demonstratio Math. 46(3) (2013), 605–616.
- [8] H. Melissen, Densest packings of congruent circles in an equilateral triangle, Amer. Math. Monthly 100(10) (1993), 916–925.
- [9] N. Oler, A finite packing problem, Canad. Math. Bull. 4 (1961), 153–155.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fd67558-3d14-4cbb-91b8-215179b76576