
 

WAVES IN ELASTIC MATERIALS AND STRUCTURES 

 

 

ZBIGNIEW WESOŁOWSKI 
 

 

The mathematical description of wave propagation in elastic materials and structures is 

presented. Specifically, the focus is on the water as a transmission medium for acoustic 

waves. The following issues are discussed: discontinuity, reflection, and propagation speed, 

among others.  
 

 

1. LINEAR AND NONLINEAR ELASTICITY 

The Cartesian coordinate system is used. The displacement vector ui is a function of 

position (x1, x2, x3) and time t (cf. [1],[8]) 

ui= ui(x1,x2,x3,t).                 (1) 

The second order deformation tensor ij is given by the expression:  

)u(u
2

1
ε ij,ji,ij  .        (2) 

A comma placed after index k denotes differentiation with respect to the coordinate xk. Elastic 

energy stored in a unit of volume is a function of deformation tensor 

)(εσσ ij .        (3) 

The stress tensorijequals the derivative of the energy with respect to the deformation: 
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There exist at most (for crystals of triclinic symmetry) 21 independent elastic functions 

cijkl(l), corresponding to 21 elastic constants cijkl in linear material. Crystals with cubic 
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symmetry are characterized by 3 elastic constants. For isotropic linear elastic material for 

which 
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      (5) 

there exist only two independent elastic constants andcalled Lame constants. Nonlinear, 

second order differential equation of motion reads: 
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2. WAVE 

There exist precise definitions of all particular waves, e.g., longitudinal, torsional, 

sinusoidal, shock, standing, solitary. A general definition of a wave does not exist.  

When confronted with the notion of wave, engineers try to describe it using the sine 

function. In contrast the mathematicians, geologists try to describe it using generalized 

functions, specifically by the Dirac and the Heaviside functions (cf. [2], [4], [5], [8]). 
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The function of three space variables x1, x2, x3:  

 

t=Ψ(x1,x2,x3),         (7) 

defines the moving discontinuity surface. At time t, it separates the disturbed region from the 

undisturbed region. The regions change their position and shape. The unit normal to the 

discontinuity surface is 
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and its propagation speed U is given by the relation 
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3. DISCONTINUITY WAVE 

Assume that the quantity H=g(x1, x2, x3, t) (for example stress, derivative of temperature 

or integral of the density) is continuous on the surface Ψ(x1,x2,x3). The derivatives of H may 

be discontinuous on Ψ. Two vertical lines denote the jump, i.e., the difference between the 

value of the derivative of H on the front side of Ψ and the the derivative of H on the rear side 

of Ψ. The jump of the derivatives of H satisfies the relations  

 

AU
t

H
,An

x

H
i

i










.     (10) 

Volume 18 HYDROACOUSTICS

169



 

4. WEAK DISCONTINUITY WAVE 

For a weak discontinuity wave all ten derivatives of the displacement uk (cf. [3],[8]):  
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possess no jump on the discontinuity surface. The higher derivatives, i.e.,  
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may be discontinuous. The above relations lead to the conclusion, that these 27+9+3=39 

jumps must have the form 
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In this situation, the coefficients of the equation of motion are continuous. Therefore, the 

following equation must be satisfied: 

i

2

kljijkl AρUAnnc         (14) 

The acoustic tensor is defined as 

ljijklik nncQ        (15) 

from which is obtained the propagation condition 

0)AδρU(Q kik

2

ik  ,      (16) 

where ik is the Kronecker delta. The amplitude is a proper vector, and the product U

is the 

corresponding proper value of the acoustic tensor. Since the acceleration is discontinuous on 

  this wave is frequently called an acceleration wave. If Ak is parallel to nk the wave is 

longitudinal; if Ak is perpendicular to nk the wave is transverse. A typical wave is neither 

longitudinal nor transverse. The 6-th order algebraic equation

.0)δρUdet(Q ik

2

ik        (17) 
is satisfied. 

Therefore, for each propagation direction (n1,n2,n3) there exist 6 possible propagation 

speeds  U1 , - U1 , U2 , - U2 , U3 ,- U3  and 6 corresponding amplitudes. 

Volume 18 HYDROACOUSTICS

170



 

 
 

 

 

 
 

 

32

3

22

2

12

1

OB
U

1
,OB

U

1
,OB

U

1
 .     (18) 

Volume 18 HYDROACOUSTICS

171



 

5. REFLECTION OF THE WEAK DISCONTINUITY WAVE 

The wave OB is reflected from the plane of unit normal (k1, k2, k3).  

 

 

 

6. SURFACE WAVE 

 

 

Volume 18 HYDROACOUSTICS

172



 

 

Four real points are shown. Since the 6-th order algebraic equation must have 6 roots, 

there exist complex points. A wave with complex propagation direction and complex 

propagation speed is called a surface wave, (cf. [7]). Note that the complex plane does not 

separate undisturbed and disturbed regions! 

7. WAVES OF HIGHER ORDER  
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   (19) 

Differentiate the equation of motion. Its order increases by 1. Only the highest derivatives are 

discontinuous, therefore waves of higher order are the weak discontinuity waves. The 

propagation condition is exactly the same as the propagation condition of the acceleration 

wave.  

8. EVOLUTION OF THE WEAK DISCONTINUITY WAVE 

For a weak discontinuity wave there exists an acoustical ray, as in optics, but 

calculation is more complicated since the wave is not transverse. Analysis of evolution of the 

amplitude is time consuming. For engineers; a numerical approach is useful. Exact results are 

too long and too complex to be interesting. 

9. STRONG DISCONTINUITY WAVE  

For this wave on the discontinuity surface Ψ the displacement uk is continuous and their 

derivatives with respect to xi and time t are discontinuous. In this situation not only the second 

derivatives of uk, but also the coefficients of the governing differential equations are 

discontinuous on t=Ψ(x1,x2,x3). Such a wave is usually called a shock wave, (cf. [8]). 
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Analysis and calculations lead to the following scheme for the eliminate weak and strong 

discontinuity waves 
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10. WAVES IN STRUCTURES 

1.Torsional wave in a circulal cylinder   very easy 

2. Bending wave in a rail        difficult 

3. Wave in a pipeline          difficult 

4. Thermal wave    `      very difficult 

5. Wave in a bell                                       very difficult, since up to 7 frequencies must be 

matched and during matching, only removal of 

material is allowed. Adding material is impossible 

example of a 470 kg bell: 
main tone....................   a1    435 Hz. 
jméno patrona ............................................   st. Hyacint 
nárazov tón  .....         .............................a1        (+0,25) 
S8 (spodní oktáva) ................................a-3        (-0,75) 
3 (tercie)................................................. c2         (+0,50) 
5 (kvinta).................................................e2         (-1,25) 
8 (horní oktáva)......................................a2         (+0,25) 
10 (decima) ............................................c3         (+2,00) 
12 (duodecima) .....................................e3          (+0,50) 

 
6. Collision of billiards balls An exact solution of this problem is unknown! The 

solution quoted in many textbooks is not correct. In 

general, after collision inside the balls there appear 

many reflected waves. Their energy must be 

accounted for the equations. This fact is evident in 

the example of the collision of two rods of different 

lengths shown below 
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After the collision both rods are compressed. The short rod, after the stage 7, is stress-

free. Later, it moves with speed –v. Until stage 10, parts of the long rod until stage 10 are 

compressed. Later, the waves reflect from the ends and some parts are under tension. After 

the stage 7, the central point of the long rod does not move. The waves are reflected from the 

ends and a standing wave appears.  

7. Solitary waves 

Consider a heavy long wire of rectangular cross-section in a gravitational field (such 

as, a wire hanging between two poles). Rotation of cross-section depends on the position and 

time and is denoted by (x,t), (cf. [7]). The motion is governed by the Sine - Gordon 

equation: 
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There exist infinitely many static stable solutions, infinitely many static unstable solutions 

and infinitely many other solutions, e. g., the solution 
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where c is constant. 
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The same Sine - Gordon equation governs the motion of a chain situated on sinusoidal 

hill z=sin(y). The chain is almost parallel to the x-direction and moves in the y-direction. 

Motion in the x-direction is negligible.  
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We face the solitary wave, when the left end of the chain is situated in one valley and 

the right part is situated in the next valley, as on the following picture. Most of the energy is 

localized near the point A.  

 
 

Two solitary waves are shown on the following picture. They are running in opposite 

directions. The waves collide and annihilate each other (see stage 3). Later both waves 

recover (see stage 4). Solitary waves which recover after annihilation are called solitons.  

Volume 18 HYDROACOUSTICS

177



 

 

 
 
 

Shallow water waves display similar behavior The water speed of such a wave is 

governed by the Korteweg – de Vries equation 

0
x

u

x

u
6u

t

u
 t),u(x,u

3

3















 ,               (24) 

 

where u(x,t) is the water speed. One of the solutions is 
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t)u(x, 2  ,     (25) 

where c is the speed of the solitary wave. Far from the point x=ct, water speed is small. Near 

the point x=ct water speed is large; most of the energy is localized near the point x=ct. 
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11. SUMMARY 

In this paper, waves in elastic material and elastic structures have been considered. The 

propagation speeds and amplitudes of sinusoidal waves, acceleration waves, waves of higher 

order, strong discontinuity waves, surface waves and solitary waves have been calculated. 

Additionally, the mathematical relations between such waves have been discussed. 
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