Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Efficient synthesis of cyclic carbonates is crucial due to their significant value in the chemical industry. A two-step procedure typically produces cyclic carbonates: first epoxidizing cycloheptene and then carboxylating it to form the cyclic carbonate. Combining these processes into a direct oxidative carboxylation reaction would be advantageous from an economic perspective, as it would eliminate the need for additional work-up procedures. Moreover, the effective capture and storage of CO2, a significant contributor to global warming, would also be very advantageous. This study examines the process of oxidative carboxylation of cycloheptene. Supported ruthenium catalysts facilitate the epoxidation step, while a mixture of tetrabutylammonium bromide and zinc bromide enables the cycloaddition of carbon dioxide in the second step. The study evaluates the performance of the catalysts work in both phases and finds that the cyclic carbonate is produced with good selectivity using a one-pot, two-step method.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
57--63
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
- Chemistry department, College of Science and Art in Sharurah, Najran University, Saudi Arabia
Bibliografia
- 1. Alsaiari, A. R. (2024) Oxidation of 1-hexene using supported ruthenium catalysts under solvent-free conditions, S.Afr.j.chem. (Online) 78. DOI:10.17159/0379-4350/2024/v78a09
- 2. Alsaiari, A. R. (2022). Supported ruthenium catalyst as an effective catalyst for selective oxidation of toluene, Journal of the Indian Chemical Society, 99, pp. 100593. DOI:10.1016/j.jics.2022.100593
- 3. Alsaiari, R. A. (2022). Oxidation of cycloalkane using supported ruthenium catalysts under solvent-free conditions, Chemical Industry & Chemical Engineering Quarterly, 28(1), pp. 85-93. DOI:10.2298/CICEQ210304020A
- 4. Aresta, M. & Dibenedetto, A. (2002). Carbon dioxide as building block for the synthesis of organic carbonates: behavior of homogeneous and heterogeneous catalysts in the oxidative carboxylation of olefins, J. Mol. Catal. A, 399, pp.182-183. DOI:10.1016/S1381-1169(01)00514-3
- 5. Bai, D. & Jing, H. (2010) Aerobic oxidative carboxylation of olefins with metalloporphyrin catalysts. Green Chem 12:39. DOI:10.1039/b916042f
- 6. Bodzek, M. (2022) Nanoparticles for water disinfection by photocatalysis: A review. Archives of Environmental Protection, 48, 1 pp. 3-17. DOI: 10.24425/aep.2022.140541
- 7. Beier, M.J., Kleist, W., Wharmby, M.T., Kissner, R., Kimmerle, B., Wright, P.A., Grunwaldt, J-D. & Baiker, A. (2012) Aerobic epoxidation of olefins catalyzed by the cobalt-based metal-organic framework STA-12(Co). Chem Eur J, 18, 887. DOI:10.1002/chem.201101223
- 8. Chen, F., Dong, T., Xu, T., Li, X. & Hu, C. (2011) Direct synthesis of cyclic carbonates from olefins and CO2 catalyzed by a MoO2 (acac)2-quaternary ammonium salt system. Green Chem, 13, 2518. DOI:10.1039/C1GC15549K
- 9. Evangelisti, C., Guidotti, M., Tiozzo, C., Psaro, R., Maksimchuk, N., Ivanchikova I., Shmakov A.N. & Kholdeeva, O. (2017). Titanium-silica catalyst derived from defined metallic titanium cluster precursor: synthesis and catalytic properties in selective oxidations. Inorganic Chim Acta, 30, pp. 393-401. DOI:/10.1016/j.ica.2017.06.059 .
- 10. Han, Q., Qi, B, Ren, W., He, C., Niu, J. & Duan, C. (2015). Polyoxometalate-based homochiral metal-organic frameworks for tandem asymmetric transformation of cyclic carbonates from olefins. Nature Communication, 6, pp. 10007. DOI:10.1038/ncomms10007
- 11. Hou, S.L., Dong, J., Zhao, X.Y., Li, X.S., Ren, F.Y., Zhao, J. & Zhao, B. (2023). Thermocatalytic Conversion of CO2 to Valuable Products Activated by NobleMetal-Free Metal-Organic Frameworks, Angew. Chem. Int. Edi., 62, e202305213. DOI:10.1002/anie.202305213
- 12. Kumar, S., Singhal, N., Singh, R.K., Gupta, P., Singh, R. & Jain S.L. (2015). Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant. Dalton Trans, 44, 11860. DOI:10.1039/C5DT01012H
- 13. Li, J.W., Zeng, H.L., Dong, X., Ding, Y.M., Hu, S.P., Zhang, R.H., Dai, Y.Z., Cui, P.X., Xiao, Z., Zhao, D.H., Zhou, L.J., Zheng, T.T., Xiao, J.P., Zeng, J. & Xia, C. (2023). Selective CO2 Electrolysis to CO Using Isolated Antimony Alloyed Copper. Nature Communication, 14, pp. 340-350. DOI:10.1038/s41467-023-35960-z .
- 14. Maksimchuk, N.V., Ivanchikova, I.D., Ayupov, A.B. & Kholdeeva, O.A. (2016). One-step solvent-free synthesis of cyclic carbonates by oxidative carboxylation of styrenes over a recyclable Ti-containing catalyst, Appl Catal B, 181, 363. DOI:10.1016/j.apcatb.2015.08.010
- 15. Napadensky, E. & Sasson, Y. (1991) Selective decomposition of tetralin hydroperoxide catalysed by quaternary ammonium salts. J Chem Soc Chem Commun 2, 65. DOI:10.1039/C39910000065
- 16. Pal, T.K., De, D. & Bharadwaj, B.K. (2020). Metal-Organic Frameworks for the Chemical Fixation of CO2 into Cyclic Carbonates, Coordin. Chem. Rev., 408, 213173. DOI:10.1016/j.ccr.2019.213173
- 17. Ramidi, P., Felton, C.M., Subedi, B.P., Zhou, H., Tian, Z.R., Gartia, Y., Pierce, B.S. & Ghosh, A. (2015). Synthesis and characterization of manganese(III) and high-valent manganese-oxo complexes and their roles in conversion of alkenes to cyclic carbonates. Journal of CO2 Utilization, 9, pp. 48-57. DOI:10.1016/j.jcou.2014.12.004
- 18. Shao, Y., Kosari, M., Xi, S.B. & Zeng, H.C. (2022). Single Solid Precursor-Derived ThreeDimensional Nanowire Networks of CuZn-Silicate for CO2 Hydrogenation to Methanol. ACS Catalysis, 12, pp. 5750-5765. DOI:10.1021/acscatal.2c00726
- 19. Sun, J., Fujita, S-i., Bhanage, B.M. & Arai, M. (2004). Direct oxidative carboxylation of styrene to styrene carbonate in the presence of ionic liquids. Catalysis Communications, 5, pp. 83-87. DOI:10.1016/j.catcom.2003.11.016
- 20. Velty, A. & Corma, A. (2023). Advanced Zeolite and Ordered Mesoporous Silica-Based Catalysts for the Conversion of CO2 to Chemicals and Fuels, Chem. Soc. Rev., 52, pp. 1773-1946. DOI:10.1039/D2CS00456A
- 21. Verdol, J.A. (1962) U.S. Patent, 3025305.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fd03868-5c8e-49b0-9243-80b2a85c2a0f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.