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Abstract 
This study is an analysis of the possibility of harnessing backwater in open river channels to create waterways 

in the area of the river mouth. To accomplish this, simplified methods of analysing non-uniform flow have 

been assessed, with the use of Rühlmann’s, Tolkmitt’s and Bresse’s equations. It was demonstrated that 

Bresse’s method is the best of the three – the results obtained by using it to determine the range of backwater 

from the receiving body are much closer to true values than for the other two, and it is the only method that 

meets the physical criterion of backwater size with the boundary condition of Chezy depth tending to 0. 

The carried out analyses demonstrated that it is possible to create high-class waterways in lower reaches of 

rivers by modifying the geometry of their channels, namely the depth and slope of their bottom. 

 

 

Introduction 

The effect of backwater from the receiving body 

occurs in lower reaches of rivers that flow into 

large receiving bodies. The size and range of back-

water vary depending on the position of water in 

the receiving body. 

This backwater effect occurs in the area of the 

estuary of the Oder and in the rivers that flow into 

Bay of Szczecin and Lake Dąbie. Backwater in 

lower reaches of rivers can be harnessed i.e. for the 

purposes of navigation: a high-class waterway can 

be created by dredging (instead of damming up). 

The determination of the size and range of backwa-

ter in the lower reaches of rivers by approximation 

is difficult in such conditions because of the se-

lected method, as well as due to the definition of 

the values of key parameters such as the water level 

rise at the mouth cross-section, as well as filling 

“h” for uniform flow. Variable bottom slope is also 

often the case. 

The subsequent section of the paper analyses 

three different methods of calculating backwater 

range (Rühlmann’s, Tolkmitt’s and Bresse’s) and 

assesses their usefulness. It also includes a number 

of analyses on the example of a 0.00–12.00 km 

section of the selected river, taking into account 

certain parameters (hydrographic, hydrological and 

hydraulic) approximate to this section. 

Assumptions simplifications and input data 

Modifications of the geometry of a natural wa-

tercourse flowing into the receiving body, which 

causes backwater at the tributary, can be basically 

divided into three categories: 

1) modification of the width of the watercourse 

(tributary); 

2) modification of the depth (dredging – lowering 

the bottom); 

3) modification of the slope. 

Additionally, two or all three of these categories 

can be used simultaneously (mixed case). 

The categories of modifications listed in points 

1, 2 and 3 were considered in terms of the possibil-

ity of creating an international class waterway for 

a theorised case. This allowed to answer the ques-

tion whether it is possible to obtain the desired 

geometric parameters of a high-class waterway in 

the lower (“mouth”) reaches of a river by changing 

the geometrical parameters of the river channel. 

The following assumptions and simplifications 

were used to analyse the calculations of backwater 

range: 
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a) The river flows into a large receiving body 

whose influence in the lower reaches of a river 

causes non-uniform flow (backwater).  

b) The river has the channel of a constant width B 

(calculated for the assumed set of calculation pa-

rameters) and there is a constant flow Q and of 

constant slope I. Therefore, there is a uniform 

flow above the zone of influence of the receiv-

ing body. 

Given the conditions a) and b) it can be con-

cluded and further assumed that for the mouth 

cross-section Z + h = const (as long as the bot-

tom is not lowered). 

c) Modifying the width of the channel, slope of the 

bottom, position of the bottom and flow rates 

may influence the backwater range from the re-

ceiving body. 

d) The influence of such modifications of channel 

geometry was analysed for the following data: 

– flows: Q1 = 10 m
3
/s and Q2 = 20 m

3
/s; 

– bottom slope: I1 = 0.0002 and I2 = 0.0003; 

– channel width: B1 = 5 m, B2 = 10 m, …, 

B20 = 100 m; 

– Z + h = const: const1 = 2.0 m, const2 = 3.0 m, 

const3 = 4.0 m. 

e) The assumed channel roughness coefficient was 

n = 0.03. 

f) The analysis was based on the following simpli-

fied equations for non-uniform flow: Rühl-

mann’s, Tolkmitt’s and Bresse’s. The reason 

was that these three equations are used if the  

detailed geometry of the watercourse is not 

available. 

Mathematical model of the effect 

Two sections were considered: I and II located 

in a very small distance of ds from each other [1]. 

 

Fig. 1. Graphical calculation scheme for non-uniform flow 

Bernoulli’s equation for the two analysed cross-

sections can be expressed as follows: 
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Equation (2) and (3) are the general equations of 

steady non-uniform flow in open channels.  

For the special case of uniform flow where I = i, 

and dh/ds = 0 we obtain: 
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It can be transformed to obtain Chezy equation 

for uniform flow: 

 hIRAcQ   (5) 

The following assumptions and simplification 

are used to analyse the course of the table of liquid 

for non-uniform flow in a simple channel with con-

stant cross-section, where the table of the liquid is 

parallel to the bottom and the slope of the bottom is 

in the direction of the flow. 

The case where i > 0 was considered. 

The following designations were added: 

 0000 hRcAK   (6) 

that allowed to obtain the following relation: 
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The value of K0 does not depend on the slope 

but only on the shape and the filling of the cross-

section. Thus, the following designation was used 

by analogy: 

 hRAcK     
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where: 

H – normal depth, 

K0 – flow rate corresponding to the depth. 

Therefore: 
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When the following formula is introduced: 
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where: 

h1 and h2 – filling of the cross-section corre-

sponding to coefficients K1 and K2, 

x – a fixed power coefficient. 

Taking into account the relation: 
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the following can be derived: 
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The final equation is obtained as [2]: 
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If const is: 
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where: )()(1    (16) 

If j is omitted, that is, if it is assumed that j = 0, 

the formula (16) can be used. The value of j = 0 

only slightly differs from j  0 for the equations, 

therefore it can be omitted in the calculations. 

To analyse the impact of modifications of the 

geometry of the river channel on the size and range 

of backwater, the following calculation scheme was 

adopted (Fig. 2) [3]:  

– the river flows into the receiving body causing 

backwater at the tributary; 

– the level of the receiving body water for the 

calculation scheme is constant; 

– the cross-section of the channel is rectangular; 

– the slope of the bottom of the channel is con-

stant. 

I=i, w ruchu jednostajnym 

Fig. 2. Calculation scheme 

The adopted constant level of the water table in 

the receiving body means that the value of Z + h = 

const, for various values of channel width B, flow 

rate Q and bottom slope “I” gives different values 

of Z but their sum is always constant. Changing 

const value equals to lowering the bottom (dredg-

ing). Approximated equations were used to calcu-

late the range of backwater: 

a) Rühlmann’s [4]: 
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b) Tolkmitt’s [4]: 
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c) Bresse’s [4, 5]: 
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where: 

v – velocity acc. to Chezy [m/s] [6], 
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Therefore: 
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The following calculation scheme was adopted for 

cases a), b) and c): 

h – acc. to Chezy [m], 
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therefore:  
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Although Rühlmann’s and Tolkmitt’s equations 

apply only to rectangular and parabolic channels, 

they can be successfully used for natural channels 

with cross-sections similar to a rectangle or a pa-

rabola. 

According to various authors, if the cross-

section of the channel is more or less regular for the 

analysed area, the obtained results are sufficiently 

accurate for practical calculations. Thus, Rühl-

mann’s equation applies to channels with steep 

banks, whereas Tolkmitt’s equation to channels 

with flat banks. 

Example calculations 

The following parameters were assumed for fur-

ther calculations: 

Q1 = 10 m
3
/s  and  Q2 = 20 m

3
/s; 

I1 = 0.0002  and  I2 = 0.0003; 

Z + h = const, thus: Z = const – h. 

The calculations were performed for different 

values of Z + h = const; 

const1 = Z + h = 2.0 m, 

const2 = Z + h = 3.0 m, 

const3 = Z + h = 4.0 m. 

First, the changes in the channel depth versus 

the changes in the width (i.e. widening the channel) 

were calculated. Figure 3 presents the calculated 

results showing that for an increase of B there is 

a corresponding decrease of h and increase of Z 

(with Z + h = const). 

Figures 3a and 3b present the relation between 

the change of the depth of the river channel and  

its width for various slopes of the bottom and the  

various flow rates Q in a rectangular channel. 

It can be observed that, naturally, with the in-

crease of the channel depth, its width decreases. 

Nonetheless, it should be emphasized that above 

certain width values (for the assumptions made in 

this paper – above 60–80 m) depth changes are 

minimal. 

The subsequent part is a calculation of backwa-

ter with the use of the different specified above 

methods. 

Fig. 3. Changes of filling H for different widths B acc. to Chezy-Manning 
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The results are shown as graphs in figures 4–9 

[3]. 

 

Fig. 4. Backwater range acc. to Rühlmann, Tolkmitt and Bresse 

– Z + h = 2 m, Q = 10 m3/s, I = 0.0002 

 

Fig. 5. Backwater range acc. to Ruhlmann, Tolkmitt and Bresse 

– Z + h = 2 m, Q = 10 m3/s, I = 0.0003 

 

Fig. 6. Backwater range acc. to Rühlmann, Tolkmitt and Bresse 

– Z + h = 4 m, Q = 10 m3/s, I = 0.0002 

The results clearly show that changing the ge-

ometry of the watercourse in its the lower reaches 

(“mouth” section) has a significant impact on the 

size and range of the backwater, and prove that 

deepening and widening the channel may allow to 

achieve the desired characteristics of the waterway 

for a certain section of the watercourse. 

An analysis of the results allows to draw the 

conclusion  that  different calculation methods yield 

 

Fig. 7. Backwater range acc. to Ruhlmann, Tolkmitt and Bresse 

– Z + h = 4 m, Q = 10 m3/s, I = 0.0003 

 

Fig. 8. Backwater range acc. to Ruhlmann, Tolkmitt and Bresse 

– Z + h = 2 m, Q = 20 m3/s, I = 0.0003 

 

Fig. 9. Backwater range acc. to Ruhlmann, Tolkmitt and Bresse 

– Z + h = 4 m, Q = 20 m3/s, I = 0.0003 

highly different values of backwater range – the 

greatest ranges were obtained by using Rühlmann’s 

method, whereas the results for Bresse's method 

were the lowest. This begs the question – what 

method to use in the absence of detailed geometric 

data? 

To answer this question it was analysed whether 

the following criteria were met for all cases: 

– supercritical flow (Froude number Fr < 1) [6], 

– turbulent flow (Reynolds number Re > 6000) [7]. 

The values of Froude number (Fr) were deter-

mined for different widths and a flow rate Q = 10 
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m
3
/s and I = 0.0002. Fr value varied from 0.25 to 

0.01. 

This allows to draw the conclusion that the crite-

ria for supercritical flow are met. Additionally, 

Reynolds numbers were calculated, assuming that 

the temperature of water t = 10C, and thus by  

assuming a kinematic viscosity coefficient  = 

1.3110
–6

. 

In all cases, even at a depth of 0.02 m, the ob-

tained values of Re > 6000. Thus, the criteria for 

turbulent flow are also met. 

Interesting results were obtained when calculat-

ing the backwater range for a flow rate Q = 10 m
3
/s 

and I = 0.0002 and if extreme conditions were as-

sumed – width of 5000 m and depth h tending to 

“0”. The calculated backwater range is then: 

– acc. to Rühlmann L = 95,414 km 

– acc. to Tolkmitt L = 76,598 km 

– acc. to Bresse L = 9,800 m = 9.8 km 

This makes it clear that the results obtained us-

ing Rühlmann’s and Tolkmitt’s methods are com-

pletely unrealistic. 

There exist a very simple method of determining 

the maximum range of backwater for extreme con-

ditions. Assuming that the depth of the channel 

tends to zero (H  0), the backwater range will be 

equal to the length of the section where the water 

table of the receiving body (horizontal) “pene-

trates” the bottom. 

That is: 

with 0H , 
I

Z
L max  (26) 

which is shown as a graph in figure 11. 

 

Fig. 11. Boundary conditions diagram for H  0 

With the conditions thus defined, it is possible to 

verify whether the equations (methods) satisfy this 

condition. It is easy to demonstrate that only 

Bresse’s equation (method) satisfies this boundary 

condition. 

Therefore, it was decided that Rühlmann’s and 

Tolkmitt’s methods should not be used due to the 

following: 

– irregular course of the water level rise curve, for 

which there is no physical explanation; 

– too great value for backwater ranges, for which 

there is no practical explanation; 

– obtaining completely unrealistic results for ex-

treme conditions (which affects the quality of 

the equation); 

– failure to meet the boundary condition for H  

0. 

Conclusions 

The theoretical analysis presented in this paper 

demonstrates that by changing the geometry of 

a watercourse at its mouth it is possible to achieve 

the desired waterway parameters by harassing the 

backwater effect caused by the receiving body. 

The results of the calculations clearly show that 

the size and range of backwater increase with the 

increase of channel width and lowering of the bot-

tom – the increase of Z + H. On the other hand, 

greater slope and increased flow rate reduce the 

range of backwater. 

It was found that Rühlmann’s and Tolkmitt’s 

methods should not be used in practice, as they 

completely fail to model the physics of the effect. It 

is preferred to use Bresse’s method as a specific 

case of Bakhmeteff method. 

Modifying roughness coefficient “n” changes 

the filling of the channel h, and in consequence 

affects the size and range of backwater. 

A practical case for the lower reaches of the Ina 

analysed in another paper [8] demonstrated that by 

changing the parameters of the river channel 

(width, slope and position of the bottom) it is pos-

sible to obtain, at the analysed section, a IV interna-

tional class waterway, by changing the size and 

range of backwater. 
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