PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Materiały termoelektryczne w odbiorze ciepła odpadowego

Autorzy
Rocznik
Tom
Strony
44--47
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • Łukasiewicz - Instytut Elektrotechniki, Wrocław
Bibliografia
  • [1] Hostler S.R., Kaul P., Qu V., Cullen Ch., Abramson A.R., Thermal and electrical characterization of nanocomposites for thermoelectrics, w: The Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITHERM '06, s. 1400-1405, IEEE, 2006.
  • [2] Królicki Z., Termodynamiczne podstawy obniżania temperatury, OWPWr, Wrocław, 2006.
  • [3] Rudden M.N., Wilson J., Elementy fizyki ciała stałego, PWN, Warszawa, 1975.
  • [4] Toshima N., Yan N., Kajita M., Thermoelectric Properties of Spin-Coated Polyaniline Films, w: 21st International Conference on Thermaelectronics, s. 147-150, IEEE, 2002.
  • [5] Zawadzka E., Moroń L., Zych B., Polianilina i nanokompozyty z matrycą polianilinową do zastosowań w elektrotechnice, w: Dokumentacja Techniczna Nr 50/032600/026, IEL OTiME, 2011.
  • [6] Li J., Tang X., Li H., Yan Y., Zhang Q., Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline, w: Synthetic Metals, tom 160, s.1153-1158, Elsevier, 2010.
  • [7] Duda H., Transport elektronowy wymuszony gradientem temperatury w wybranych spinelach chromowych, Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2007.
  • [8] Fleurial J.P., Borshchevsky A., Caillant T., Ewell R., New materials and devices for thermoelectric applications [dokument elektroniczny], Electronics Division Meeting of the American Ceramic Society, Clemson, USA, 2000, dostępne na: JPL Technical Report Server, https://trs.jpl.nasa.gov/handle/2014/16195
  • [9] Kittel Ch., Introduction to Solid State Physics, PWN, Warszawa, 1974.
  • [10] Shinohara, Y., Ohara, K., Imai, Y., Isoda, Y., Nakanishi H., Problems of conductive polymers as thermoelectric materials, In Proceedings of the 22nd International Conference on Thermoelectrics, s. 298-300, IEEE, 2004.
  • [11] Fergus J., Oxide materials for high temperature thermoelectric energy conversion, Journal of the European Ceramic Society, tom 32, nr 3, s. 525-540, 2012, dostępne na: www.sciencedirect.com.
  • [12] Ohtaki M., Oxide Thermoelectric Materials for Heat-to-Electricity Direct Energy Conversion, Procedia Engineering, s. 1050-1053, 2012, dostępne na: www.sciencedirect.com
  • [13] Park K., Lee G., Thermoelectric properties of Ca0.8Dy0.2MnO3 synthesized by solution combustion process, Nanoscale Research Letters, nr 6, s. 548-553, 2011, dostępne na: www.nanoscale-reslett.com/content/6/1/548.
  • [14] Chatterjeea K., Gangulyb S., Karguptac K., Banerjeea D., Bismuth nitrate doped polyaniline - Characterization and properties for thermoelectric application, Synthetic Metals, nr 161, s. 275-279, 2011.
  • [15] Yan H., Ohta T., Toshima N.: Stretched Polyaniline Films Doped by (±)-10-Camphorsulfonic Acid: Anisotropy and Improvement of Thermoelectric Properties, Macromolecular Materials and Engineering, nr 286, s. 139-142, 2001.
  • [16] Shakouri A., Li S., Thermoelectric Power Factor for Electrically Conductive Polymers, 18th International Conference on Thermoelectrics, IEEE, s. 402-406, 1999.
  • [17] Yan H., Toshima N., Stretched Polyaniline Films Doped by (±)-10-Camphorsulfonic Acid Anisotropy and Improvement of Thermoelectric Properties, Macromolecular Materials and Engineering, tom 286, nr 3, s. 139-142, 2001.
  • [18] Toshima N., Yan H., Ohta T., Electrically Conductive Polyaniline Films as Organic Thermoelectric Materials, 19th Int. Conf. on Thermoelectrics, Cardiff, s. 214-217, 2000.
  • [19] Li Y., Zhao Q., Wang Y., Bi K., Synthesis and characterization of Bi2Te3/polyaniline composites, Materials Science in Semiconductor Processing, nr 14, s. 219-222, 2011.
  • [20] Ivanov S., Tsakova V., Electroless versus electrodriven deposition of silver crystals in polyaniline, Electrochimica Acta, tom 50, nr 28, s. 5616-5623, 2005.
  • [21] Wallace G., Spinks G., Conductive Electroactive Polymers. Intelligent Materials Systems, TFG, 2003.
  • [22] Kaiser A.B,. Systematic Conductivity Behavior in Conducting Polymers: Effect of Heterogeneous Disorder, Advanced Materials, tom 13, nr 12-13, s. 927-941, 2001.
  • [23] Kaiser A.B., Flanagan G.U., Stewart D.M., Beaglehole D., Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synthetic Metals, nr 117, s. 67-73, 2001, dostępne na: www.elsevier.com.
  • [24] Rogers S.A., Kaiser A.B., Thermopower and resistivity of carbon nanotube networks and organic conducting polymers, Current Applied Physics, nr 4, s. 407-410, 2004, dostępne na: www.sciencedirect.com
  • [25] Mateeva N., Niculescu H., Schlenoff J., Testardi L.R., Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole. Journal of Applied Physics, nr 83 (6), s. 3110-3117, 1998, dostępne na: www.scitation.aip.org
  • [26] Kaiser A.B., Park Y.W., Current-voltage characteristics of conducting polymers and carbon nanotubes. Synthetic Metals, nr 152, s. 181-184, 2005, dostepne na: www.sciencedirect.com
  • [27] Anand J., Palaniappan S., Sathyanarayana D.N., Conducting Polyaniline Composites, Progress in Polymer Science, nr 23, s. 993-1018, 1998, dostępne na: www.sciencedirect.com.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fca63f6-beaf-4b01-8cb7-02597a05dc40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.