Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recent research on the action of vanadium compounds shows its important effect on adipogenesis processes and adipocyte function. On the basis of previous screening tests in cellular models, the novel vanadium complex (N′-[(E)-(5-bromo-2-oxophenyl)methylidene]4-methoxybenzohydrazide)oxido(1,10-phenanthroline)vanadium(IV) was selected for this study. This complex exhibits potent inhibition of tyrosine phosphatases, and differences in the degree of inhibition were observed particularly for phosphatases. A significant increase in intracellular lipid accumulation and proliferative effect on 3T3-L1 preadipocytes confirmed the ability of this complex to enhance adipogenesis. The insulinomimetic activity of the tested complex was also demonstrated in fully differentiated 3T3-L1 adipocytes, in which glucose utilization was potentiated. The obtained results support the hypothesis that vanadium complexes show promising possibilities for use as new therapeutic strategies for the treatment of type 2 diabetes.
Czasopismo
Rocznik
Tom
Strony
55--62
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Pharmacological Screening, Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
autor
- Department of Radioligands, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
autor
- Department of Radioligands, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
autor
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
autor
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
autor
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
autor
- Department of Cytobiology, Chair of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Collegium Medicum, Krakow, Poland
Bibliografia
- 1. Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature. 2006; 14;444(7121):847-53.
- 2. Simha V, Garg A. Lipodystrophy: lessons in lipid and energy metabolism. Curr Opin Lipidol. 2006; 17(2):162-9.
- 3. Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R, Grundy SM, Khera A, McGuire DK, de Lemos JA. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012; 308(11):1150-9
- 4. Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab. 2009; 20(3):107-14.
- 5. Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006; 4(4):263-73.
- 6. Rosen, ED, Spiegelman, BM. Molecular regulation of adipogenesis. Annual Review of Cell Biology, 2000; 16, 145-171.
- 7. Mota de Sá P, Richard AJ, Hang H, Stephens JM. Transcriptional Regulation of Adipogenesis. Compr Physiol. 2017; (2):635-674.
- 8. Lefterova MI, Lazar MA. New developments in adipogenesis. Trends Endocrinol Metab. 2009; 20(3):107-14.
- 9. Chaudhary S, Dube A, Kothari V, Sachan N, Upasani CD. NS-1: a novel partial peroxisome proliferator-activated receptor γ agonist to improve insulin sensitivity and metabolic profile. Eur J Pharmacol. 2012; 684(1-3):154-60.
- 10. Mayer P, Haas B, Celner J, Enzmann H, Pfeifer A. Glitazone-like action of glimepiride and glibenclamide in primary human adipocytes. Diabetes Obes Metab. 2011; 13(9):791-799.
- 11. Haas B, Schlinkert P, Mayer P, Eckstein N. Targeting adipose tissue. Diabetol Metab Syndr. 2012; 4(1):43.
- 12. Dubyak GR, Kleinzeller A. The insulin-mimetic effects of vanadate in isolated rat adipocytes. Dissociation from effects of vanadate as a (Na+-K+)ATPase inhibitor. J Biol Chem. 1980; 255(11):5306-5312.
- 13. Goldstein BJ. Regulation of insulin receptor signaling by protein-tyrosine dephosphorylation. Receptor. 1993; 3(1):1-15.
- 14. Bae KH, Kim WK, Lee SC. Involvement of protein tyrosine phosphatases in adipogenesis: new antiobesity targets? BMB Rep. 2012; 45(12):700-706.
- 15. Irving E, Stoker AW. Vanadium Compounds as PTP Inhibitors. Molecules. 2017; 22(12): E2269.
- 16. Green H, Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974; 3(2):127-33.
- 17. Hiromura M, Nakayama A, Adachi Y, Doi M, Sakurai H. Action mechanism of bis(allixinato)oxovanadium(IV) as a novel potent insulin-mimetic complex: regulation of GLUT4 translocation and FoxO1 transcription factor. J Biol Inorg Chem. 2007; 12(8):1275-1287.
- 18. Zuo YQ, Liu WP, Niu YF, Tian CF, Xie MJ, Chen XZ, Li L. Bis(alphafurancarboxylato)oxovanadium(IV) prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes. J Pharm Pharmacol. 2008; 60(10):1335-1340.
- 19. Liu JC, Yu Y, Wang G, Wang K, Yang XG. Bis(acetylacetonato)-oxovanadium(iv), bis(maltolato)oxovanadium(iv) and sodium metavanadate induce antilipolytic effects by regulating hormonesensitive lipase and perilipin via activation of Akt. Metallomics. 2013; 5(7):813-20.
- 20. Seale AP, de Jesus LA, Park MC, Kim YS. Vanadium and insulin increase adiponectin production in 3T3-L1 adipocytes. Pharmacol Res. 2006; 54(1):30-38.
- 21. Halevas E, Tsave O, Yavropoulou MP, Hatzidimitriou A, Yovos JG, Psycharis V, Gabriel C, Salifoglou A. Design, synthesis and characterization of novel binary V(V)-Schiff base materials linked with insulin-mimetic vanadium-induced differentiation of 3T3-L1 fibroblasts to adipocytes. Structurefunction correlations at the molecular level. J Inorg Biochem. 2015; 147:99-115.
- 22. Zhang L, Huang Y, Liu F, Zhang F, Ding W. Vanadium(IV)-chlorodipicolinate inhibits 3T3-L1 preadipocyte adipogenesis by activating LKB1/AMPK signaling pathway. J Inorg Biochem. 2016; 162:1-8.
- 23. Kazek G, Głuch-Lutwin M, Mordyl B, Menaszek E, Szklarzewicz J, Gryboś R, PapieżM. Cell-based Screening For Identification Of The Novel Vanadium Complexes With Multidirectional Activity Relative To The Cells And The Mechanisms Associated With Metabolic Disorders. Sci. Tech., Innov 2019; 1 (1).
- 24. Zabierowski P, Szklarzewicz J, Gryboś R, Modryl B, Nitek W. Assemblies of salen-type oxidovanadium(IV) complexes: substituent effects and in vitro protein tyrosine phosphatase inhibition. Dalton Trans. 2014; 43(45):17044-17053.
- 25. Welte S, Baringhaus KH, Schmider W, Müller G, Petry S, Tennagels N. 6,8-Difluoro-4- methylumbiliferyl phosphate: a fluorogenic substrate for protein tyrosine phosphatases. Anal Biochem. 2005; 338(1):32-38.
- 26. Poulos SP, Dodson MV, Hausman GJ. Cell line models for differentiation: preadipocytes and adipocytes. Exp Biol Med (Maywood). 2010; 235(10):1185-1193.
- 27. Green H, Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975; 5(1):19-27.
- 28. Thompson KH, Lichter J, LeBel C, Scaife MC, McNeill JH, Orvig C. Vanadium treatment of type 2 diabetes: a view to the future. J Inorg Biochem. 2009; 103(4):554-558.
- 29. Smith U, Kahn BB. Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J Intern Med. 2016; 280(5):465-475.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fc93a4c-7007-4001-9b89-c3c88c7a9459