PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An analysis of the auxetic cranioplasty implant

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following paper is a reflection on the advisability of using auxetic structures in medical devices. For this purpose, a model of a skull implant was designed. This implant could be used for cranioplasty of bone defects after neurosurgical procedures. The implant is made of a titanium alloy and has an auxetic "double arrow" structure. The behavior of the implant was investigated in two cases, under the influence of increased intracranial pressure and impact of an external force. The calculations were made with the finite element method implemented in the SolidWorks 2020 program. Moreover, the natural frequency of the structure was examined in the Comsol Multiphysics program.
Rocznik
Strony
art. no. 2020315
Opis fizyczny
Bibliogr. 14 poz., il. kolor.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
autor
  • Poznan University of Technology, Faculty of Mechanical Engineering, Institute of Applied Mechanics, ul. Jana Pawla II 24, 60-965 Poznan, Poland
Bibliografia
  • 1. A. Zaitsev, M. Kurzhupov, A. Samarin, O. Kirsanova, Experience with Codubix implants use to close bone defects of the cranial vault in neurocancer patients, Onkologia. P. A. Herzen Journal, 3 (2014) 1-7
  • 2. A. M. Shah, H. Jung, S. Skirboll, Materials used in cranioplasty: a history and analysis, Neurosurgical Focus FOC, 36(4) (2014) E19.
  • 3. Z. Wang, C. Luan , G. Liao, J. Liu, X. Yao, J. Fu, Progress in Auxetic Mechanical Metamaterials: Structures, Characteristics, Manufacturing Methods, and Applications, Advanced Engineering Materials, 22(10) (2020) 202000312.
  • 4. H. Jopek, Computer simulation of bending a fibrous composite reinforced with auxetic phase, Physica Status Solidi B, 253(7) (2016) 1369-1377.
  • 5. X. Yu, J. Zhou, H. Liang, Z. Jiang, L. Wu, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Progress in Materials Science, 94 (2018) 114-173.
  • 6. T. Strek, J. Michalski, H. Jopek, Computational Analysis of the Mechanical Impedance of the Sandwich Beam with Auxetic Metal Foam Core, Physica Status Solidi B 256(1) (2018) 1800423.
  • 7. D. Łączna, F. Dłużniewski, T. Stręk, Analysis of Eigenfrequencies of the Foot Prosthesis with Auxetic Component Layer, Vibrations in Physical Systems, 31(2) (2020) 2020214.
  • 8. T. Strek, A. Matuszewska, H. Jopek, Finite Elements Analysis of the Influence of the Covering Auxetic Layer of Plate on the Contact Pressure, Physica Status Solidi B 254(12) (2017) 1700103.
  • 9. H. Jopek, Finite Element Analysis of Tunable Composite Tubes Reinforced with Auxetic Structures, Materials, 10(12) (2017) 1359.
  • 10. A. Bochenek, M. Reicher, Anatomia człowieka. Tom IV, PZWL, Warszawa 1981.
  • 11. R. Chrzan, A. Urbanik, K. Karbowski, M. Moskała, J. Polak, M. Pyrich, Technologia: Reverse engineering, technology in planning of cranioplasty prostheses based on CT examination, Pol. J. Radiol. 75(1) (2010) 220-221.
  • 12. W. Kozubski, P. Liberski, Neurologia. Podręcznik dla studentów medycyny, PZWL, Warszawa 2006.
  • 13. F. Bolechowski, Podstawy ogólnej diagnostyki klinicznej, PZWL, Warszawa 1982.
  • 14. https://antropologia-fizyczna.pl/antropometria/kraniometria-cefalometria (2020.11.08).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fb8a13a-86a1-4278-a6d4-6cd9a7c34450
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.