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This article presents the results of the statistical modeling of copper losses in the silicate slag of the sulfi de concen-
trates smelting process. The aim of this study was to defi ne the correlation dependence of the degree of copper 
losses in the silicate slag on the following parameters of technological processes: SiO2, FeO, Fe3O4, CaO and Al2O3 
content in the slag and copper content in the matte. Multiple linear regression analysis (MLRA), artifi cial neural 
networks (ANNs) and adaptive network based fuzzy inference system (ANFIS) were used as tools for mathematical 
analysis of the indicated problem. The best correlation coeffi cient (R2 = 0.719) of the fi nal model was obtained 
using the ANFIS modeling approach.
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INTRODUCTION

In modern pyrometallurgical process of obtaining 
copper by   smelting of   sulfi de concentrates two interme-
diate phases are created: silicate slag and copper matte. 
These phases are separated by gravity because of the 
difference in specifi c weight. The precipitated copper 
matte is further processed, while the slag is removed 
from the system1.

In various processes of melting sulfi dic copper concen-
trates, the copper content of the slag varies within the 
limits of 0.5 to 2%. In order to reduce the copper content 
in the silicate slag, different   strategies of managing the 
melting process are being employed: a) minimizing the 
amount of generated slag, b) minimizing the percenta-
ge of copper in the slag and c) processing the slag to 
recover as much as possible Cu1, 2.

  Slag produced in the autogenous smelting process 
(Flash, INCO, Isasmelt, etc.), with a copper content of 
about 2%, is further treated in the fl otation process2 or 
processed in the electric furnace, in order to lower the 
copper content in the slag to the value of 0.5–0.6% as 
in the stationary conditions of smelting in the reverbe-
ratory furnace. The fi nal slag with the copper content 
of 0.5–0.6% is deposited in tailing pounds or used in 
the production of some types of building materials3, 4, 5.

The loss of copper with the slag is a global problem in 
the   pyrometallurgy of copper because it has a signifi cant 
impact on the economics of copper production2. Copper 
is present in the silicate slag melt due to its solubility in 
sulfi de, oxide and elemental form, as well as in the form 
of residual non-precipitated droplets of copper matte6–8. 
The dissolved Cu is associated with either O2– ions 
(Cu2O), or with S2– ions (Cu2S). The Cu2O becomes the 
dominant form of dissolved Cu at matte grades above 
70% Cu9 due to the increased activity of Cu2S in the 
matte. Higher Cu2S activity pushes the reaction:
  Cu2S(matte)  + FeO(slag)  →   Cu2O(slag)  + FeS(matte)      (1)
to the right. The solubility of sulfur in slag is also lower 
in contact   with higher-grade mattes10.

Numerous studies have shown that the copper content 
in the slag can be reduced by reducing the viscosity 
through regulating its composition, especially the content 
of:   SiO2, FeO, Fe3O4, CaO, Al2O3 as well as the copper 
content in the copper matte11, 12.

Goni and Sanchez11 and Živković   et al.10 have shown 
that the slag composition has the largest infl uence on 
the copper loss in it. Sulfi de copper concentrates smelt-
ing slag predominantly consists of fayalite (2FeO . SiO2) 
which is contained with more than 70%. It has been 
found that a high content of SiO2 in the slag lowers its 
copper content due to the reduction in the viscosity and 
the oxidation potential of the slag8.

Magnetite (Fe3O4) which is partially formed in the 
process of melting and added with the return converter 
slag increases oxidation potential and viscosity of the slag, 
which leads to an increase in its copper content due to 
the reaction in the slag – copper matte interphase layer46:
Cu2S(matte) + 3Fe3O4(slag) → Cu2O (slag) 
+ 9FeO(slag) +  SO2(gas)  (2)

Matte droplets can become suspended in smelter slag 
by several other mechanisms. Some are carried upwards 
from the molten matte layer by gas bubbles generated 
during the reaction (2) and the following reaction:
3Fe3O4(slag) + FeS(matte)  → 10FeO(slag) + SO2(gas)  (3)

     Other components contained within the slag: FeO, CaO 
and Al2O3 each, in their own way, affect the basicity of 
the slag13 on which the distribution coeffi cients between 
the slag and the copper matte for Cu and accessory 
metals depend. Furthermore, the copper content of the 
copper matte affects the distribution of Cu and accessory 
metals between the slag and the copper matte12. Despite 
the fact that reverberatory furnace is largely outdated 
and replaced with more up to date processes, there are 
many results published that can be fi nd in contempo-
rary literature describing the research in this kind of 
furnace3, 8, 14, 15. This way, according to the reference 
sources, large numbers of researches were conducted 
under controlled conditions in the reverberatory smelting 
furnace, in order to defi ne mathematical models for the 
prediction of copper content in the waste slag, which 
have a satisfactory level of R2 for the given conditions13. 

When it comes to more advanced copper smelter pro-
cesses, Liu and his associates16, 17 defi ned the dynamic 
model for the prediction of the copper content in the 
waste slag in the fl ash smelting process. These studies 
have confi rmed the earlier results of Zivkovic et al.8, 10 
about the infl uence of the content of SiO2, CaO, FeO 
in the slag and Cu in the matte. However, validation of 
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such defi ned models in a real industrial process condi-
tions did not provide satisfactory results. Parameters of 
the smelting process are pre-defi ned and do not provide 
the option of affecting the copper losses in the slag with 
their variation.

For the modeling of technological processes in order 
to predict the output of the process based on the change 
of the process input, under the real process conditions, 
the main problem is the uncertainty of the modeling 
parameters, despite the fact that this uncertainty is 
limited. When linear statistical models (LSM) do not 
give satisfactory results, a non-linear models based on 
artifi cial intelligence are being employed. These models 
have the potential for solving complex technological 
applications that involve a large number of independent 
parameters in a nonlinear relationship18, 19. Models based 
on artifi cial neural networks (ANN) can be found in the 
literature over a long period of time13, 20–22. However, in 
cases where the parameters of the technological process 
used for modeling are in a state of great entropy, the 
uncertainty is large and the potential of ANN is not able 
to adequately connect these parameters in non-linear 
relationship. In recent times,   adaptive     neuro-fuzzy infe-
rence system (ANFIS) is being used, which represents 
a combination of Artifi cial Neural Network (ANN) and 
     Fuzzy Inference System (FIS) in a way that the neural 
network learning algorithm is used to determine the 
parameters of the FIS23. ANFIS in many cases enables 
modeling of parameters of the technological process 
under conditions of signifi cant uncertainty, with a gre-
ater degree of determination in relation to all the other 
models24–29.

The motive for the research, whose results are presen-
ted in this paper, is to defi ne a satisfactory mathematical 
model to predict the copper content in the waste slag of 
sulfi de concentrates smelting in the reverberatory furnace, 
depending on the input parameters of the technological 
process which can be controlled during the process. The 
process of smelting of sulfi de concentrates under the real 
industrial conditions is carried out under conditions of 
considerable   uncertainty, therefore the defi nition of an 
adequate model for process management poses a chal-
lenge that is of both theoretical and practical importance. 
Defi ned model, with satisfactory R2 value, allows for the 
better management of the sulphide copper concentrates 
smelting process with the aim to reduce the content of 
copper in the waste slag, which improves the economics 
of the process.

MODELING THE COPPER LOSSES IN THE SILI-
CATE SLAG 

Experimental data
The research, whose results are presented in this paper, 

was performed in the copper smelting company RTB 
Bor, Serbia in which the smelting process is carried out 
in a reverberatory furnace and the resulting silicate slag, 
with the copper content within the range of 0.5–0.6%, 
is the fi nal waste material, which is deposited directly 
to the waste yard near to the smelter plant.

During the year 2012 the sampling was conducted at 
each discharge of the slag from the reverberatory furna-
ces in the company RTB Bor, Serbia, and the composite 
sample   was chemically analyzed each day for the   contents 
of the following components: Cu, SiO2, FeO, Fe3O4, 
CaO, Al2O3, as well as the Cu content in the copper 
matte. Details considering the sampling procedure and 
methodology of samples preparation are presented in our 
previous publications8, 10, 12, 13. For quantitative determina-
tion of the elements, with the concentration above 0.1%, 
  optical emission   spectrograph OFS JARRELL – ASH 
70.000 (SAD) was used, while for the elements below 
0.1%, mass spectrograph JOEL JMS – 0.1 MB (Japan) 
with ionic optical system Matauh-Herzog, was used.

While monitoring the process of sulfi de copper concen-
trates smelting during the days of sampling for analysis, 
technological process parameters (temperature, volume, 
dynamics,...) had been within the defi ned limits, which 
presents a guarantee that the analyzed samples of the 
slag and the matte represent the real conditions of the 
technological process.

In this way the statistical sample of 356 measurements 
during the 2012 was formed, with measured contents of 
all components. Obtained results  are shown in Table 1.

  The data for the research presented in this paper were 
collected, during the year 2012, by measuring input and 
output process parameters, under   stable operation mode 
of the production line. All 356 data sets were collected 
this way, comprising the following:

Input parameters of the process: SiO2 content in the 
slag (mass pct.) = X1; FeO content in the slag (mass 
pct.) = X2; Fe3O4 content in the slag (mass pct.) = X3; 
CaO content in the slag (mass pct.) = X4; Al2O3 content 
in the slag (mass pct.) = X5; Copper content in the 
matte (mass pct.) = X6. 

Output parameter of the process: copper content in 
the slag (mass pct) = Y.

The values of the measured input parameters of the 
technological process (X1–X6) and the process quality 
indicator – output of the process (Y), are presented in 
Table 1 in the form of descriptive statistics results.

Table 1. Values of the Input (Xi) and the Output (Y) Variables of the industrial sulfi dic copper concentrates smelting 
process – Descriptive Statistics of 356 Data Sets
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It should be noted that output variable – Y has a small 
variance (Table 1). However, it presents the copper 
content in the slag that is one of the most important 
parameters of the industrial    sulfi dic copper concentrates 
smelting process; therefore it cannot be omitted in the 
analysis.   A small change in Y leads to a considerable 
change of the technical parameters and the economy of 
the investigated process.

Multilinear Regression Analysis
In order to defi ne the correlation dependence in the 

form: output of the process (Y) = f input of the process 
(X1– X6), a bivariate correlation analysis was performed. 
As the result of this analysis, Pearson correlation (PC) 
coeffi cients, with responding statistical signifi cance, were 
calculated (Table 2).   

To defi ne the dependence of the output parameter as 
the function of the input parameters, using the multi-
ple linear regression analysis (MLRA) with acceptable 
level of fi tting (strong correlation), it is necessary that 
the value of PC is near 0.5, with statistical signifi cance 
(p ≤ 0.05)13, 19, 30. An analysis of the data presented 
in the Table 2 reveals that statistical signifi cance is 
attained    in the following cases: Y → X3; PC = –0.227 
(p< 0.001); Y→ X2; PC = 0.26 (p< 0.001); Y → X6; 
PC = 0.312 (p< 0.001). This was also the case for the 
following interdependence between the predictors of the 
process: X1 → X2; PC = –0.67 (p< 0.001); X1 →X3; PC 
= –0.66 (p< 0.001); X3 → X4; PC = –0.57 (p< 0.001) 
and X3 →X5; PC = –0.52 (p< 0.001). However, there 
were no cases with strong linear correlation. Low values 
of PC and the satisfactory level of statistical signifi can-
ce (p < 0.001) indicate that the application of MLRA 
probably cannot provide a satisfactory coeffi cient of de-
termination (R2) of the linear model. To further test the 
linear regression analysis applicability, ANOVA analysis 
of the MLRA model was performed. For the purpose of 
MLRA analysis, the assembly of 356 input and output 
data sets was divided into two groups. The fi rst group 
consisted of 243 (68 pct) randomly selected data lines, 
and it was used for training of the model, whereas the 
second group consisted of 113 (32 pct) remaining data 

lines from the starting data base, and it   was used for 
testing of the model. 

Linear dependence of the copper content in the slag (Y) 
on infl uencing parameters of the technological process 
(X1–X6) was obtained using SPSS software application 
Version 17.0 (SPSS Inc., Chicago, IL). The results of 
the ANOVA tests of developed model are presented 
in Table 3. Signifi cant F statistics (Table 3) indicate 
that using the model is better than guessing the mean. 
Also, the signifi cance value of the F statistic is less than 
0.05, which means that the variations explained by the 
model are not caused by chance. However, the ratio of 
regression to residual is 19 pct: 81 pct, advocating that 
only 19 pct of the dependent variable (Y) values are 
explained by the model. Where ‘‘Regression’’ displays 
information about the variation accounted for by the 
model, and ‘‘residual’’ displays information about the 
variation that is not accounted for by the model17. This 
is a clear indicator that the MLRA model of investigated 
data set would not result in adequate enough accuracy. 
This was additionally proven with the low level of the 
coeffi cient of determination (R2), for the training phase 
of the MLRA modeling approach, which is presented 
in the Table 4.   

The multiple correlation coeffi cient (R) presents the 
linear correlation between the observed and model 
predicted values of the dependent variable.   Its small 
value (0.432) indicates a weak relationship. R2, which 
is the coeffi cient of determination, is the squared value 
of the multiple correlation coeffi cient. It shows that 
approximately 19 pct of variation in Y is explained by 
the model, as is indicated already by the regression to 
residual ratio17. Accordingly, it can be concluded that 
the MLRA approach would not be the appropriate tool 
for modeling of the investigated process, because of low 
values of all adequacy tests indicators.

Artifi cial Neural Networks (ANNs)
Artifi cial neural networks represent a class of tools that 

can facilitate the exploration of large systems in ways not 
previously possible.   These methods have shown explosive 
growth in the last decade and are still being developed 
at a breathtaking pace. In many ways, neural networks 

Table 2. Correlation Matrix for the input (X1 – X6) and the Output (Y) variables of the industrial copper concentrate 
smelting process (Number of Data Points for each variable is 356)
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can be viewed as nonlinear approaches to multivariate 
statistical methods, not bounded by assumptions of 
normality or linearity.

Although neural networks have   originated outside 
the fi eld of statistics and have even been viewed as an 
alternative to statistical methods in some circles, some 
signs indicate that this viewpoint is making way for 
an appreciation of the ways in which neural networks 
complement classic statistics19, 31. Details about ANN 
procedure description are discussed in details in the 
references18, 24.

However, the    demerit of the ANNs based models, lays 
in the fact that it is based on only one rule describing 
the behavior of input variables. This way, it is diffi cult 
to develop accurate enough model for modeling the set 
of input variables with wide range (like variables X1, X3 
and X6 in Table 1), because all values of this variables 
will enter the model in one wide scope. Also, it is dif-
fi cult to use the same model on validation of new set 
of input parameters, obtained from the same process 
in subsequent time intervals, if the range of the input 
parameters is too broad.

ANN methodology was applied for modeling the 
copper losses in the silicate slag of the sulfi de con-
centrates smelting process, using available data, whose 
descriptive statistic is presented in Table 1. The same as 
in the MLRA procedure, the assembly of 356 input and 
output data sets was divided into two groups. The fi rst 
group consisted of 243 (68 pct) of randomly selected 
data lines, and it was used for training of the network, 

whereas the second group consisted of 113 (32 pct) of 
remaining data lines from the starting database, and it 
was used for testing of the network.

For the development of relational ANN confi guration, 
we used previously defi ned input parameters X1–X6 

and output parameter Y (copper content in the slag), 
as the elements of the network architecture. For such a 
network, the obtained coeffi cient of determination was 
only R2 = 0.452 for the training phase. During the ANN 
testing phase, the calculated coeffi cient of determination 
(R2) was additionally decreased in comparison with the 
testing phase, and now it equals 0.368. 

This was the clear indicator that „one rule“ non-linear 
statistical modeling approach, based on ANN approach, 
is also inadequate tool for the modeling of the investi-
gated process.

Adaptive Network Based Fuzzy Inference System 
(ANFIS)

Considering that the ANFIS procedure can allocate the 
values of each input variable in more than one scale, it 
can be used for     modeling the set of input variables with 
relatively wide range; such are the variables X1, X3 and 
X6, in Table 1. ANFIS inference system was proposed by 
Jang23. Although the ANN and fuzzy logic models are the 
main areas of artifi cial intelligence, ANFIS combines the 
two methods by using their strengths and thus eliminates 
some of the shortcomings of their individual application 
and as such is a reliable technique for solving complex 
nonlinear problems32, 33.

The mechanism of fuzzy reasoning utilized by ANFIS 
is schematically shown in Figure 1.

For simplicity, it is assumed that the fuzzy inference 
has two inputs x1 and x2 and one output variable y and 
presumably that the rule base conditions two fuzzy if-
-then rules of Takagi and Sugeno’s type, following rule 
equations can be defi ned25, 34:

Figure 1. Fuzzy reasoning

Table 3. Results of ANOVAa, b Test Performed During Training of the Model

Table 4. MLRA Summarya,b of the Model Developed 
During Training Phase
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Rule 1: If x1 is A1 and x2 is B1 then f1 = p1 .x1 + q1.x2 + r1

Rule 2: If x1 is A2 and x2 is B2 then f2 = p2.x1 + q2.x2 + r2

Layer 4. Every node i in the layer 4 has a node func-
tion of following type: Oi

4 =  . f1 = . (pix1 + qix2 + 
ri), where pi, qi and ri will be referred to as consequent 
parameters.

Layer 5. The single node of layer 5 is the node that 
computes the overall output as the summation of all 

incoming signals i.e., 

Training of the parameters in the ANFIS structure 
is accommodated according to the hybrid learning rule 
algorithm which is the integration of the gradient descent 
method and the least square methods. In the forward 
pass of the algorithm, functional signals go forward until 
layer 4 and the consequent parameters are identifi ed by 
the least squares method to minimize the measured error. 
In the back propagation pass, the premise parameters 
are updated by the gradient descent method13, 19, 32, 34.

The reason to use the Adaptive Network Based Fuzzy 
Inference System (ANFIS) for modeling the copper losses 
in the silicate slag of the sulfi de concentrates smelting 
process, presented in this paper, can be found in the 
fact that the MLRA approach resulted with low accuracy 
of obtained model (R2 = 0.187), as well as the ANNs 
approach which resulted with the accuracy of R2 = 0.368. 

For that reason, it was decided to develop the ANFIS 
based numerical model, which is based on more than 
one rule to describe the behavior of input variables. 
Considering that the ANFIS procedure can allocate the 
values of each input variable in more than one scale, 
it can be used for modeling the set of input variables 
with wide range; such are the variables X1, X3, and X6, 
in Table 1.

According to the values and the ranges of input va-
riables, presented in Table 1, it was decided that the 
two rules ANFIS network should be applied, to obtain 
adequate prediction results of the fi nal model. Selected 
membership function, for all variables, was Gaussian 

Figure 2. ANFIS architecture

Figure 3. Membership functions of input variables (X1 to X6)

The general ANFIS architecture is shown in the Fi-
gure 2.

As can be seen in Figure 2, ANFIS architecture can 
be presented with fi ve layers. Where X1 and X2 are 
inputs to nodes in layer 1, Ai and Bi are the linguistic 
label of the ranges of input variables (small, large, etc), 
associated with the node function. The node functions 
in the same layer are of the same function family as 
described below24, 25, 29, 32:

Layer 1. Membership functions of nodes located in 
layer 1 (Oi

1 = μAi(Xi) or Oi
2 = μBi(Xi)) specify the 

degree to which the given Xi satisfi es the quantifi er Ai, 
Bi, etc. Usually, membership functions are either bell 
(shaped with maximum equal to 1 and minimum equal 
to 0), or a Gaussian function. 

Layer 2. Nodes located in the layer 2 are multipliers, 
which are multiplying the signals exiting the layer 1 
nodes. For example Oi

2 = Wi = μAi(Xi) . μBi(Xi), i  = 
1, 2, etc. Output of each node is representing the fi ring 
strength of a rule. 

Layer 3. The i-th node of layer 3 calculates the ratio 
of i-th rules fi ring strength to sum of all rules fi ring 
strengths. This way Oi

3 =  = Wi /(W1 + W2 + …), 
i = 1, 2, … 



  Pol. J. Chem. Tech., Vol. 17, No. 3, 2015 67

one. Representation of the membership functions for 
all 6 input variables is presented in Figure 3.

Same as in case of MLRA and the ANN, in order 
to apply the ANFIS methodology for the modeling of 
the copper losses in the silicate slag of the sulfi de con-
centrates smelting process, presented in this paper, the 
assembly of 356 input and output samples was divided 
into two groups. The fi rst group consisted of 243 (68 
pct) of randomly selected samples, and it was used for 
training of the model, whereas the second group con-
sisted of 113 (32 pct) of the remaining samples from the 
starting data set, and it was used for testing the model. 
The selection of the variables for these two stages was 
performed by using random number generator based on 
Bernoulli distribution.

During the training phase, the correction of the 
weighted parameters (pi, qi, ri, etc) of the connections, 
presented in the Figure 1, was achieved through the 
necessary number of iterations, until the mean squared 
error between the calculated and measured outputs of 
the ANFIS network, was minimal. During the second 
phase, the remaining 32% of the data was used for test-
ing of the “trained” network. In this phase, the network 
used the weighted parameters which were determined 
during the fi rst phase. These new data, excluded during 
the network training stage, were then incorporated as 
the new input values (Xi) which were then transformed 
into the new outputs (Y). For calculation presented in 
this paper MATLAB ANFIS editor was used35.

In the network training phase, the necessary number 
of iterations was performed until the error (RMSE) 
between the measured output of the copper content in 
the slag Y and the calculated values wasn’t minimized 
and remained constant (Figure 4) . In the case of the 
investigation presented in this paper, optimal number 
of iterations (epochs) was 10. 

Figure 5, and Figure 6, for the training and the testing 
stage, respectively. 

Figure 4. RMSE  of the ANFIS model during the training 
(○) and the testing (●) stage

Figure 5. The copper losses in the silicate slag of the 
sulfi de concentrates smelting process predicted 
by ANFIS vs. the actual measured value in the 
training stage

Figure 6. The copper losses in the silicate slag of the 
sulfi de concentrates smelting process predicted 
by ANFIS vs. actual measured value in the 
testing stage

In the testing phase, remaining data lines were used 
to test the trained ANFIS network. Fi  nal fi delity of the 
obtained ANFIS model was assessed by coeffi cient of 
determination (R2) between measured and model predic-
ted values of the copper losses in the silicate slag of the 
sulfi de concentrates smelting process (Y), in the training 
and the testing stage. The R2 values are presented in 

The ANFIS modeling approach, predicted the copper 
losses in the silicate slag of the sulfi de concentrates smel-
ting process with a determination coeffi cient R2 = 0.989 
(Fig. 5) and R2 = 0.719 (Fig. 6), in the training stage 
and the testing stage – respectively, which represents 
very large signifi cance. This means that the copper losses 
in the silicate slag of the sulfi de concentrates smelting 
process can be predicted with accuracy near 72%, based 
on known input parameters (X1 to X6), using the ANFIS 
model described in this paper. 

To further sustain the applicability of proposed ANFIS 
model, validation vas performed with the data collected 
during the year 2013. For that purpose, additional set 
of 113 data lines was recorded at the same production 
line, during the period January – May 2013. This was the 
same number of data, as previously used in the testing 
stage. With this new data base, validation of the model 
was performed. The ANFIS model responded with 
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expected high accuracy, resulting with the coeffi cient of 
determination R2 = 0.708.

Limitations of the obtained results are refl ected in the 
fact that the ANFIS model cannot show the strength 
of the infl uence of the individual input parameters 
(X1  –X6) on the copper content in the waste slag (Y), 
which is the fundamental disadvantage of ANN and AN-
FIS methodology in comparison to the MLRA. However, 
the achieved R2 = 0.989 in the model defi ning  phase 
and R2 = 0.719 in the model testing phase provide the 
possibility of predicting the copper content in the waste 
slag by changing the composition of input charge, with a 
signifi cant probability (composition of the input charge in 
the smelting process defi nes the composition of the slag).

CONCLUSIONS

Results presented in this paper indicate that complex 
industrial systems can be modeled using nonlinear sta-
tistical approach based on ANFIS methodology, even 
in those cases where MLRA and ANNs do not achieve 
adequate accuracy.

Values of the correlation analysis of the degree of 
copper losses in the silicate slag of the sulfi de concen-
trates smelting process, under industrial conditions in the 
factory RTB Bor, Bor (Serbia) were determined using 
the ANFIS methodology. The selected ANFIS structure 
consisted of 243 (68 pct) sa   mples for training and 113 
(32 pct) samples for testing. 

The values of the coeffi cient of determination (R2) 
were 0.989 and 0.719, in the training and the testing stage 
– respectively. These results indicated a highly accept-
able degree of fi tting of the dependence Y = f(X1–X6), 
obtained using ANFIS procedure as part of the Math 
Lab software application, version 7.1 (2007). The results 
presented in this paper indicated that the defi ned ele-
ments of the ANFIS structure can be applied in order 
to accurately predict the copper losses in the silicate 
slag of the sulfi de concentrates smelting process in the 
investigated factory. This claim was sustained by valida-
tion of the model on completely new data set, obtained 
in the same factory, du  ring 2013.
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