PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linear barycentric rational collocation method for solving biharmonic equation

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-dimensional biharmonic boundary-value problems are considered by the linear barycentric rational collocation method, and the unknown function is approximated by the barycentric rational polynomial. With the help of matrix form, the linear equations of the discrete biharmonic equation are changed into a matrix equation. From the convergence rate of barycentric rational polynomial, we present the convergence rate of linear barycentric rational collocation method for biharmonic equation. Finally, several numerical examples are provided to validate the theoretical analysis.
Wydawca
Rocznik
Strony
587--603
Opis fizyczny
Bibliogr. 24 poz., tab., wykr.
Twórcy
autor
  • School of Science, Shandong Jianzhu University, Jinan 250101, P. R. China
Bibliografia
  • [1] A. Cardone, D. Conte, R. D’ambrosio, and B. Paternoster, Multivalue collocation methods for ordinary and fractional differential equations, Mathematics 10 (2022), no. 2, 185, DOI: https://doi.org/10.3390/math10020185.
  • [2] J. Shen, T. Tang, and L. Wang, Spectral Methods: Algorithms, Analysis and Applications, Springer, New York, 2011.
  • [3] J. P. Berrut, S. A. Hosseini, and G. Klein, The linear barycentric rational quadrature method for Volterra integral equations, SIAM J. Sci. Comput. 36 (2014), no. 1, 105–123, DOI: https://doi.org/10.1137/120904020.
  • [4] P. Berrut and G. Klein, Recent advances in linear barycentric rational interpolation, J. Comput. Appl. Math. 259 (2014), 95–107, DOI: https://doi.org/10.1016/j.cam.2013.03.044.
  • [5] E. Cirillo and K. Hormann, On the Lebesgue constant of barycentric rational Hermite interpolants at equidistant nodes, J. Comput. Appl. Math. 349 (2019), 292–301, DOI: https://doi.org/10.1016/j.cam.2018.06.011
  • [6] A. Abdi, J. P. Berrut, and S. A. Hosseini, The linear barycentric rational method for a class of delay Volterra integro-differential equations, J. Sci. Comput. 75 (2001), 1757–1775, DOI: https://doi.org/10.1007/s10915-017-0608-3.
  • [7] J. Li and Y. Cheng, Linear barycentric rational collocation method for solving second-order Volterra integro-differential equation, Comput. Appl. Math. 39 (2020), 92, DOI: https://doi.org/10.1007/s40314-020-1114-z.
  • [8] M. Li and C. Huang, The linear barycentric rational quadrature method for auto-convolution Volterra integral equations, J. Sci. Comput. 78 (2019), no. 1, 549–564, DOI: https://doi.org/10.1007/s10915-018-0779-6.
  • [9] J. Y. Lee and L. Greengard, A fast adaptive numerical method for stiff two-point boundary value problems, SIAM J. Sci. Comput. 18 (1997), no. 2, 403–429, DOI: https://doi.org/10.1137/S1064827594272797.
  • [10] N. R. Bayramov and J. K. Kraus, On the stable solution of transient convection-diffusion equations, J. Comput. Appl. Math. 280 (2015), no. 1, 275–293, DOI: https://doi.org/10.1016/j.cam.2014.12.001.
  • [11] J. Li and Y. Cheng, Linear barycentric rational collocation method for solving heat conduction equation, Numer. Methods Partial Differ. Equ. 37 (2021), no. 1, 533–545, DOI: https://doi.org/10.1002/num.22539.
  • [12] M. S. Floater and K. Hormann, Barycentric rational interpolation with no poles and high rates of approximation, Numer. Math. 107 (2007), no. 2, 315–331, DOI: https://doi.org/10.1007/s00211-007-0093-y.
  • [13] J. P. Berrut, M. S. Floater, and G. Klein, Convergence rates of derivatives of a family of barycentric rational interpolants, Appl. Numer. Math. 61 (2011), no. 9, 989–1000, DOI: https://doi.org/10.1016/j.apnum.2011.05.001.
  • [14] G. Klein and J. P. Berrut, Linear rational finite differences from derivatives of barycentric rational interpolants, SIAM J. Numer. Anal. 50 (2012), no. 2, 643–656, DOI: https://doi.org/10.1137/110827156.
  • [15] G. Klein and J. P. Berrut, Linear barycentric rational quadrature, BIT Numer. Math. 52 (2012), 407–424, DOI: https://doi.org/10.1007/s10543-011-0357-x.
  • [16] S. Li and Z. Wang, High Precision Meshless barycentric Interpolation Collocation Method-Algorithmic Program and Engineering Application, Science Publishing, Beijing, 2012.
  • [17] Z. Wang and S. Li, Barycentric Interpolation Collocation Method for Nonlinear Problems, National Defense Industry Press, Beijing, 2015.
  • [18] Z. Wang, Z. Xu, and J. Li, Mixed barycentric interpolation collocation method of displacement-pressure for incompressible plane elastic problems, Chinese J. Appl. Mech. 35 (2018), no. 3, 195–201.
  • [19] Z. Wang, L. Zhang, Z. Xu, and J. Li, Barycentric interpolation collocation method based on mixed displacement-stress formulation for solving plane elastic problems, Chinese J. Appl. Mech. 35 (2018), no. 2, 304–309.
  • [20] M. L. Zhuang, C. Q. Miao, and S. Y. Ji, Plane elasticity problems by barycentric rational interpolation collocation method and a regular domain method, Internat. J. Numer. Methods Engrg. 121 (2020), no. 18, 4134–4156, DOI: https://doi.org/10.1002/nme.6431
  • [21] J. Li, X. Su, and J. Qu, Linear barycentric rational collocation method for solving telegraph equation, Math. Method. Appl. Sci. 44 (2021), no. 14, 11720–11737, DOI: https://doi.org/10.1002/mma.7548.
  • [22] J. Li and S. Yu, Linear barycentric rational collocation method for Beam force vibration equation, Shock. Vib. 2021 (2021), 5584274, DOI: https://doi.org/10.1155/2021/5584274.
  • [23] N. Mai-Duy and R. I. Tanner, A spectral collocation method based on integrated Chebyshev polynomials for two-dimensional biharmonic boundary-value problems, J. Comput. Appl. Math. 201 (2007), no. 1, 30–47, DOI: https://doi.org/10.1016/j.cam.2006.01.030.
  • [24] J. Li and Y. Cheng, Barycentric rational method for solving biharmonic equation by depression of order, Numer. Methods Partial Differ. Equ. 37 (2021), no. 3, 1993–2007, DOI: https://doi.org/10.1002/num.22638.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fb58068-78bf-42ad-a197-531c87ab3800
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.