PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Regional features analysis of plugged holes of dense phase gas-solid separation fluidized bed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In contrast to traditional coal separation, dry separation does not require water and does not cause water pollution. Dense phase gas–solid fluidized beds are used for dry separation. The plugged holes in the air distributor should be tested to ensure the stability of these beds for particle separation. The pressure fluctuation is sensitive to these plugged holes. This sensitivity can be tested and diagnosed by determining the standard deviation of the pressure fluctuation. In areas with partial blockage, that is the areas with weak fluidization, a decrease in the volume fraction of the particles and in the pressure differences in the transverse of the bed results in an increase of the standard deviation of the pressure fluctuation, thereby stimulating the lateral mixing of medium-sized particles. The standard deviation and the mixing intensity decrease axially. The value of sensitivity of the plugged holes in the air distributor decreases as the height of the bed increases. The features of air distributors affect the surrounding areas. The distribution law determining the influence of plugged holes on the beds is symmetrical. As the blockage of the fluidized bed distributor region increases, the mean square error of the pressure fluctuation in the related regions increases. The intensity of the effect is proportional to the distance to the plugged holes.
Rocznik
Strony
667--679
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, 221116, Xuzhou, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, 221116, Xuzhou, China,
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, 221116, Xuzhou, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, 221116, Xuzhou, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, 221116, Xuzhou, China
autor
  • School of Chemical Engineering and Technology, China University of Mining and Technology, 221116, Xuzhou, China
Bibliografia
  • 1. BI H.T., GRACE J.R., 1996.Radial pressure difference and their fluctuations in dense fluidized beds. Chemical Engineering Science, 51(4):663–665.
  • 2. BREUERH., SNOBYR.J., MSHRA S., BISWAL D., 2009. Dry coal jigging - a suitable alternative for Indian power coals. Journal of Mines, Metals and Fuels, 57(12): 425-428.
  • 3. CELIA SOBRINO, NAOKO ELLIS, MERCEDES D.V., 2009. Distributor effects near the bottom region of turbulent fluidized beds. Powder Technology, 189:25–33.
  • 4. CHEN Q., YANG Y. 2003. Development of dry beneficiation of coal in China. Coal Preparation: A Multinational Journal, 23(1–2): 3–12.
  • 5. CHEN Y.G, TIAN Z.P., MIAO Z.Q., 2006. Analysis of the pressure fluctuations in binary solids circulating fluidized bed. Energy Conversion and Management 47:611–623.
  • 6. DONG L., ZHAO Y.M., LUO Z.F., DUAN C.L., WANG Y.W., YANG X.L., ZHANG B., 2013. A model for predicting bubble rise velocity in a pulsed gas solid fluidized bed, International Journal of Mining Science and Technology, 23:227–230.
  • 7. JENA H.M., SAHOO B.K., ROY G.K., MEIKAP B.C., 2009. Statistical analysis of the phase holdup characteristics of a gas–liquid–solid fluidized bed. The Canadian Journal of Chemical Engineering, 87(2):1–10.
  • 8. IBGE CENSUS.2011.Statistical handbook of the BRICS2011. Beijing: China Statistics Press.
  • 9. PAIVA J.M., PINHO C., FIGUEIREDO R., 2004. The influence of the distributor plate on the bottom zone of a fluidized bed approaching the transition from bubbling to turbulent fluidization. Chemical Engineering Research and Design, 82(A1): 25–33
  • 10. LIM C., GILBERTSON M., HARRISON A., 2007. Bubble distribution and behaviour in bubbling fluidized beds. Chemical Engineering Science. 62 (1–2), 56–69.
  • 11. LUO Z.F., FAN M.M., ZHAO Y.M., TAO X.X.,CHEN Q.R.,CHEN Z.Q., 2008. Density-dependent separation of dry fine coal in a vibrated fluidized bed. Powder Technology,187(2): 119-123.
  • 12. LUO Z.F., ZHAO Y.M., CHEN Q.R., FAN M.M., TAO X.X., 2002. Separation characteristics for fine coal of the magnetically fluidized bed. Fuel Processing Technology, 79(1): 63–69.
  • 13. NATIONAL BUREAU of STATISTICS of CHINA. 2012. The 2011 national economic and social development statistics bulletin of the People's Republic of China (PRC). Beijing: National Bureau of Statistics of China.
  • 14. MACPHERSON S.A., IYESON S.M., GALVIN K.P., 2011. Density-based separation in a vibrated Reflux Classifier with an air-sand dense-medium: Tracer studies with simultaneous underflow and overflow removal. Minerals Engineering, 24(10): 1046–1052.
  • 15. MARTIN L, BRIONGOS JV, NE STOR G.H., 2011. Detecting regime transitions in gas–solid fluidized beds from low frequency accelerometry signals. Powder Technology. 207:104–112.
  • 16. M. A. A., MOSES T., VISHNU P., 2007. Simulations of bubble column reactors using a volume of fluid approach: effect of air distributor. The Canadian Journal of Chemical Engineering, 85(6):290–301.
  • 17. OSHITANI J., FRANKS G.V., GRIFFIN M.,2010. Dry dense medium separation of iron ore using a gas–solid fluidized bed.Advanced Powder Technology, 21(5): 573-577.
  • 18. OSHITANI J., ISEI Y., YOSHIDA M., GOTOH K., FRANKS G., 2012.Influence of air bubble size on float–sink of spheres in a gas–solid fluidized bed. Advanced Powder Technology, 23(1): 120-123.
  • 19. ORHAN E.C., ERGUN L., ALTIPARMAK B., HONAKER R Q., 2010. Application of the FGX separator in the enrichment of catalagzi coal: a simulation study. International Coal Preparation Congress 2010 Lexington, KY; SME: 562-570.
  • 20. PRASHANT D., XU Z., SZYMANSKI J., HONAKER R.Q., BODDEZ J., 2010. Dry cleaning of coal by a laboratory continuous air dense medium fluidized bed separator. International Coal Preparation Congress 2010 Lexington, KY; SME: 608-616.
  • 21. SAMPAIO C.H., ALIAGA W., PACHECO E.T., PETTER E., WOTRUBA H., 2008. Coal beneficiation of Candiota mine by dry jigging. Fuel Processing Technology, 89(2): 198-202.
  • 22. SAHU A.K., TRIPATHY A, BISWAL S.K., 2013.Study on particle dynamics in different cross sectional shapes of air dense medium fluidized bed separator. Fuel, 111: 472–477
  • 23. SEONG Y.S., DONG H. L., GUI Y. H., DUK J.K., SANG J. S., SANG D.K., 2005. Effect of air distributor on the fluidization characteristics in conical gas fluidized beds. Korean Journal of Chemical Engineering, 22(2), 315-320.
  • 24. SONG S.L., ZHAO Y.M., LUO Z.F., TANG L.G., 2012. Motion behavior of particles in air–solid magnetically stabilized fluidized beds for separation, International Journal of Mining Science and Technology,22:725–729
  • 25. VAN DER SCHAAF, J., SCHOUTEN, J., JOHNSSON, F., VAN DEN BLEEK, C., 2002.Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. International Journal of Multiphase Flow, 28, 865–880.
  • 26. WANG S., HE Y.Q., HE J.F., GE L.H.,LIU Q., 2013. Experiment and simulation on the pyrite removal from the recirculating loadofpulverizer with a dilute phase gas–solid fluidized bed, International Journal of Mining Science and Technology ,23:01–305.
  • 27. WEINSTEIN R., SNOBY R., 2007.Advances in dry jigging improves coal quality. Mining Engineering, (1): 29-34.
  • 28. WORLD ENERGY COUNCIL, 2010.Water for Energy. London: WEC.
  • 29. YOSHIDA M., OSHITANI J., TANI K., GOTOH K., 2011. Fluidized bed medium separation (FBMS) using the particles with different hydrophilic and hydrophobic properties. Advanced Powder Technology, 22(1): 108-114.
  • 30. ZHAO Y.M., TANG L.G., LUO Z.F., LIANG C.C., XING H.B., WU W.C., DUAN C.L., 2010a. Experimental and numerical simulation studies of the fluidization characteristics of a separating gas-solid fluidized bed. Fuel Processing Technology, 91(2): 1819-1825.
  • 31. ZHAO Y.M., LIU X.J., LIU K.L., LUO Z.F., WU W.C., SONG S.L., TANG L.G., 2011. Fluidization characteristics of a gas-paigeite-powder bed to be utilized for dry coal beneficiation. International Journal of Coal Preparation and Utilization, 31(3-4): 149-160.
  • 32. ZHAO Y.M., LUO Z.F., CHEN Z.Q., TANG L.G., WANG H.F., XING H.B., 2010b. The effect of feed-coal particle size on the separating characteristics of a gas-solid fluidized bed. Journal of the South African Institute of Mining and Metallurgy, 110(5): 219-224.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fb273e1-acd7-47f1-905c-2591c97c5d3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.