Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the most important criteria for selecting coal for a given technology are the ash Fusion temperatures (AFTs). An effective way to regulate the AFTs so that they meet the criteria for a given industrial application is to form blends of different coals. The values of the AFTs in the blends are nonadditive, therefore they can't be calculated using the weighted average of the blend components. On the other hand, direct determination of ATFs values requires many additional time-consuming and expensive laboratory tests. Therefore, it is important to develop a solution that, in addition to the effective prediction of the values of AFTs, will also enable optimal selection of components of the blend in terms of its key parameters. The aim of the work was to develop an algorithm for the selection of the optimal coal blends in terms of AFTs for given industrial applications. This algorithm uses nonlinear classifying model which was built using machine learning method, support vector machine (SVM). To carry out the training samples of Polish hard coals from different mines of the Upper Silesian Coal Basin were used. The accuracy of the developed model is 92.3%. The results indicate the effectiveness of the proposed solution, which can find practical application in the form of an expert system used in the coal industry. The paper presents the concept of developed IT tool which has been tested for a selected case.
Rocznik
Tom
Strony
1311--1322
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr., wz.
Twórcy
autor
- Central Mining Institute, plac Gwarków 1, 40-166 Katowice, Poland
autor
- Central Mining Institute, plac Gwarków 1, 40-166 Katowice, Poland
autor
- Central Mining Institute, plac Gwarków 1, 40-166 Katowice, Poland
autor
- Central Mining Institute, plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
- ALEKHNOVICH, A. N., BOGOMOLOV, V. V., 2010. Use of coal blends at thermal power plants. Power Technology and Engineering 44(3), 213–219, DOI: 10.1007/s10749-010-0167-3
- BAHRIN, D., 2009. Predicting Coal Ash Fusion Temperature of South Sumatera's Blended Coal with Coal Blending Simulation and Laboratory Analysis. SISEST - RUSNAS PEBT.
- CARPENTER, A., 1995. Coal blending for power stations. IEA Coal research, United Kingdom.
- CHAWLA, N., BOWYER, K., HALL, L., KEGELMEYER, W., 2002. SMOTE: synthetic minority oversampling technique. J. Artif. Intell. Res. 16, 321–357.
- COLLOT, A.G., 2006. Matching gasification technologies to coal properties. International Journal of Coal Geology 65(3), 191-212, DOI: 10.1016/j.coal.2005.05.003
- CORTES, C., VAPNIK, V., 1995. Support-Vector Networks. Machine Learning, 273–297, DOI: 10.1023/A:1022627411411
- GERON, A., 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow. O'Reilly Media.
- GRAY, V.R., 1987. Prediction of ash fusion temperature from ash composition for some New Zealand coals. Fuel 66, 1230-1239, DOI: 10.1016/0016-2361(87)90061-5
- HUGGINS, F. E., KOSMACK, D. A., HUFFMAN, G. P., 1981. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams. Fuel 60, 577-584, DOI: 10.1016/0016-2361(81)90157-5
- JAK, E., 2002. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package. Fuel 81, 1655–1668, DOI: 10.1016/S0016-2361(02)00091-1
- KARIMI, S., JORJANI, E., CHELGANI, S. C., 2014. Multivariable regression and adaptive neurofuzzy inference system predictions of ash fusion temperatures using ash chemical composition of us coals. Journal of Fuels, DOI: 10.1155/2014/392698
- LI, F., MA, X., XU, M., FANG, Y., 2017. Regulation of ash-fusion behaviors for high ash-fusion-temperature coal by coal blending. Fuel Processing Technology 166, 131-139, DOI: 10.1016/j.fuproc.2017.05.012
- LUXSANAYOTIN, A., PIPATMANOMAI, S., BHATTACHARYA, S., 2010. Effect of mineral oxides on slag formation tendency of Mae Mohlignites Songklanakarin. Journal of Science and Technology,32(4), 403-412.
- MIAO, S., JIANG, Q., ZHOU, H., 2016. Modelling and prediction of coal ash fusion temperature based on BP neural network. MATEC web of conferences, 40, 5-10.
- MOHAMED, A., 2017. Comparative Study of Four Supervised Machine Learning Techniques for Classification. International Journal of Applied Science and Technology, 7(2), 5-18.
- PATTERSON, J.H., HURST, H.J., 2000. Ash and Slag Qualities of Australian Bituminous Coals for Use in Slagging Gasifiers. Fuel 79, 1671-1678, DOI: 10.1016/S0016-2361(00)00032-6
- PORADA, S., DZIOK, T., CZERSKI, G., GRZYWACZ, P., STRUGAŁA, A., 2017. Examinations of Polish brown and hard coals in terms of their use in the steam gasification process. Mineral resources management, 33, 15-34, DOI 10.1515/gospo-2017-0007
- RÓG, L., 2003. Effects of petrographic and chemical structure of coal on the fusion temperature of ash. Research Reports of Central Mining Institute. Mining & Environment, 1, 73-96.
- SASI, T., MIGHANI, M., ORS, E., TAWANI, R., GRABNER, M., 2018. Prediction of ash fusion behavior from coal ash composition for entrained-flow gasification. Fuel 176, 64-75, DOI: 10.1016/j.fuproc.2018.03.018
- SEGGIANI, M., 1999. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel 78, 1121–1125, DOI: 10.1016/S0016-2361(99)00031-9
- SEGGIANI, M., PANNOCCHIA, G., 2003. Prediction of coal ash thermal properties using partial least-squares regression.Industrial & engineering chemistry research, 42(20), 4919-4926, DOI:10.1021/ie030074u
- SHEN, M., QIU, K., ZHANG, L., HUANG, Z., WANG, Z., LIU, J., 2015. Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere. Energies 8, 4735-4754, DOI: 10.3390/en8064735
- SHI, W.-J., KONG, L.-X., BAI, J., XU, J., LI, W.-C., BAI, Z.-Q. et al., 2018. Effect of CaO/Fe2O3 on fusion behaviors of coal ash at high temperatures. Fuel Processing Technology 181, 18-24, DOI: 10.1016/j.fuproc.2018.09.007
- SONG, W. J., TANG, L. H., ZHU, X. D., WU, Y. Q., ZHU, Z. B., 2010. Effect of Coal Ash Composition on Ash Fusion Temperatures. Energy Fuels 24, 182-189, DOI: 10.1021/ef900537m
- TAMBE, S. S., NANIWADEKAR, M., TIWARY, S., MUKHERJEE, A., DAS, T. B., 2018. Prediction of coal ash Fusion temperatures using computational intelligence based models. International Journal of Coal Science & Technology 5(4), 486-507, DOI: 10.1007/s40789-018-0213-6
- THOMAS, L., 2002. Coal Geology. John Wiley & Sons.
- TILLMAN, D. A., DUONG, D., STANLEY, N., 2012. Harding Solid Fuel Blending Principles, Practices, and Problems. Butterworth-Heinemann/Elsevier, United States.
- VAN DYK, J.C., KEYSER, M.J., VAN ZYL, J.W., 2001. Suitability of feedstocks for the Sasol–Lurgi fixed bed dry bottom gasification process. Gasification technology conference, Gasification Technologies Council, Arlington, VA, USA, Paper 10-8.
- VAPNIK, V., 1998.Statistical learning theory. Willey, New York.
- VASSILEVA, CH., VASSILEV, S., 2002. Relations between Ash-Fusion Temperatures and Chemical and Mineral Composition of Some Bulgarian Coals. Comptes Rendus de l'Academie Bulgare des Sciences, 55 (6), 61-66.
- WANG, P., MASSOUDI, M., 2013. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions. Energies 6, 784–806, DOI: 10.3390/en6020784
- YAZDANI, S., HADAVANDI, E., CHELGANI, S. C., 2018. Rule-Based Intelligent System for Variable Importance Measurement and Prediction of Ash Fusion Indexes. Energy & Fuels 32(1), 329-335, DOI: 10.1021/acs.energyfuels.7b03280
- YÖRÜKOĞLU, M., 2017. Coal blending for thermal power stations. Madencilik 56(3), 109-116.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7faebb8d-f266-4778-8fee-5165e197fdc2