PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced effect of fine magnetite on the flotation performance of fine hematite in sodium oleate system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, the effect of magnetite with different particle sizes on the flotation performance of both coarse and fine hematite particles were investigated by using sodium oleate as a collector. The results showed that the magnetite particles with different particle sizes showed a negative effect on hematite (-106+45 μm) recovery, but the addition of magnetite with the same particle sizes as hematite during the direct flotation of -45 μm hematite was beneficial to improve the recovery of micro-fine hematite and the Fe grade of concentrate. The finer the magnetite particle was, the more obvious the agglomeration effect of hematite was. Therefore, the beneficial effect could be achieved by adjusting the particle sizes of particles. Moreover, sodium oleate was beneficial to promote the agglomeration of micro-fine magnetite and hematite. The results from the microscopic analysis, laser particle size analysis, and EDLVO calculation proved that there was an effective aggregation between fine magnetite and fine hematite particles, which increased the apparent size of hematite particles and the probability of the mineral particles adhering to bubbles, thus improving the hematite recovery.
Słowa kluczowe
Rocznik
Strony
art. no. 149673
Opis fizyczny
Bibliogr. 38 poz., rys., wykr.
Twórcy
autor
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
autor
  • Faculty of Land and Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
autor
  • State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China
  • Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
Bibliografia
  • AHMED, M.A., ALI, S.M., EI-DEK, S., GALAL., A., 2013. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol, 178, 744-751.
  • AKINWEKOMI, V., MAREE, J.P., MASINDI, V., ZVINOWANDA, C., OSMAN, M.S., FOTEINIS, S., MPENYANA--MONYATSI L., CHATZISYMEON, E., 2020. MONYATSI L., CHATZISYMEON, E., 2020. A viable option for the synthesis of goethite, hematite, magnetite, and gypsum - Gearing towards a circular economy concept. Miner. Eng. 148, 106204.
  • BHOWMIK, R.N., SARAVANAN, A., 2010. Surface magnetism, Morin transition, and magnetic dynamics in antiferromagnetic α-Fe2O3 (hematite) nanograins. J. Appl. Phys. 107, 053916
  • BODE, P.P.,, MCGRATH,MCGRATH, T.D.H.T.D.H.,, EKSTEEN,EKSTEEN, J.J., 2020. Characterising the effect of different modes of particle breakage on coarse gangue rejection for an orogenic gold ore. Miner. Process. Extr. Metall. 129, 35-48.
  • CHAPMAN, N.A., SHACKLETON, N.J., MALYSIAK, V., O’CONNOR, C.T., 2011. The effect of using different comminution procedures on the flotation flotation of Platinum-Group Minerals. Miner. Eng. 24, 731-736.
  • DARABI, H., KOLEINI, S.M.J., DEGLON, D., REZAI, B., ABDOLLAHY, M., 2016. Investigation of bubble-particle attachment, detachment and collection efficiencies in a mechanical flotation cell. Powder. Technol. 375, 109-123.
  • FORBES, E., 2011. Shear selective and temperature responsive flocculation: A comparison of fine particle flotation techniques. Int. J. Miner Process. 99, 1-10.
  • FU, Y.F., YIN, W.Z., YANG, B., LI, C, ZHU, Z.L., LI, D., 2018. Effect of sodium alginate on reverse flotation of hematite and its mechanism.. Int. J. Miner. Metall. Mater. 25, 1113––1122..
  • GUO, L.X., OU, Z.S., HU, M.X., 1999. HU, M.X., 1999. EDLVO theory and its application in coal slurry suspension. China. Min. Mag. 6, 3--5.
  • HAO, H.Q., LI, L.X., SOMASUNDARAN, P., YUAN, Z.T., 2019. Adsorption of pregelatinized starch for selective flocculation and flotation of fine sideriteflocculation and flotation of fine siderite.Langmuir. 35, 6878--6887.
  • HASELHUHN, H., KAWATRA, S.K., 2015. Flocculation and dispersion studies of iron ore using laser score using laser scattering particle attering particle size analysis.size analysis. Miner. Metall. Process. 32, 191--195.
  • HU, P., LIANG, L., PENG, Y.L., YU, H.S., XIE, G.Y., 2020. Recovery of microcrystalline graphite from Quartz Using Magnetic Seeding Magnetic Seeding.. Minerals (Basel)..10, 24.
  • HU, W.T.W.T.,, WANG, WANG, H.J.H.J.,, LIU, LIU, X.W., X.W., WANG, WANG, B., B., 2013. 2013. Monomer dissociation characteristics and selective recovery technology of microtechnology of micro--fine iron particles. J. Univ. Sci. Technol. B. 35, 1424--1430..
  • LEJA, J., (1957, 1957). Mechanism of collector adsorption and dynamic attachmentof particles to air bubbles as derived attachmentof particles to air bubbles as derived from surface-chemical studies. Trans. IMM 66, 425––437 (1956, 1957).
  • LI, D., YIN, W.Z., LIU, Q, CAO, S.H., SUN, Q.Y., ZHAO, C., YAO, J., 2017. Interactions between fine and coarse hematite Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotationparticles in aqueous suspension and their implications for flotation.. Miner. Eng.Miner. Eng. 114, 74-81.
  • LI, D, YIN, W.Z., SUN, C.B., ZHANG, R.Y., 2019. 2019. The selfThe self--carrier effecarrier effect of hematite in the flotation.of hematite in the flotation. Chin. J. Eng. 41, 1397-1404.
  • LI, H., LIU, M., LIU, Q., 2018. The effect of non--polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collectorhydroxamic acids as a collector.. Miner. Eng. 119, 105-115.
  • LUO, J.K., YANG, J.L., 1997. Theoretical criterion for the dispersion and agglomeration of fine mineral particles in a compound force field system..Met. Ore. Dressing. Abroad. 11, 1211, 12--18.
  • LUO, X.M., YIN, W.Z., SUN, C.Y., WANG, N.L., MA, Y.Q., WANG, Y.F., 2016. Improved flotation performance of hematite fines using citric acid as a dispersant hematite.. Int. J. Miner. Metall. MaterInt. J. Miner. Metall. Mater.. 23, 111923, 1119--1125.
  • MA, J.Y., XU, X., XIA, W., FU, K., LIAO, Y., 2019. Flocculation of a high-turbidity kaolin suspension using hydrophobic modified quaternary ammonium salt polyacrylamide. Processes. 7, 108
  • MEDVEDEVA, I., BAKHTEEVA, Y., ZHAKOV, S., REVVO, A., BYZOV, I., UIMIN, M., YERMAKOV, A., MYSIK, IN, M., YERMAKOV, A., MYSIK, A., A., 2013.. Sedimentation and aggregation of magnetite nanoparticles in water by a gradient magnetic field, J. Nanopart. Res. 15, 1--8.
  • OZKAN, A., DUZYOL, S., 2014. Gamma processes of shear flocculation, oil agglomeration and on and liquidliquid––liquid extraction.liquid extraction. Sep. Sep. Purif. Technol. 132, 446--451.
  • PAIVA, M., RUBIO, J., 2016. Factors affecting the flotoFactors affecting the floto--elutriation process efficiency of a copper sulfide mineralelutriation process efficiency of a copper sulfide mineral.. Miner. EngMiner. Eng. . 86, 5986, 59--65.
  • PANDA, L., DAS, B., RAO, D.S., MISHRA, B.K., 2011. Selective flocculation of banded hematite quartzite (bhq) ores. Open.Open. Miner. Process. J. 4, 45--.51.
  • PASCOE, R.D., DOHERTY, E., 1997. Shear flocculation and flotation of hematite using sodium oleate. Int. J. Miner Process, 51, 269-282.
  • PINDRED, A., MEECH, J.A., 1984. Interparticular phenomena in the flotation of hematite fines. Int. J. Miner. Process. 12, 193-.212.
  • RAO, Z.Q., ZHANG, Y.S., JIN, 2013. Improved flotation of oolitic hematite ore based on a novel cationic collector. Appl. Mech. Mater. 303-306, 2713-2716.
  • ROBINSON, P., HARRISON, R.J., MCENROE, S.A., HARGRAVES, R.B., 2004. Nature and origin of lamellar magnetism in the hematite-ilmenite series. Am. Miner. 89, 725-747
  • SCHALLER, V., KRALING, U., RUSU, C., PETERSSON, K., WIPENMYR, J., KROZER, A. WAHNSTROM, G., SANZVELASCO, A., ENOKSSON, P., JOHANSSON, C., 2008. SANZVELASCO, A., ENOKSSON, P., JOHANSSON, C., 2008. Motion of nanometer sized magnetic particles in a magnetic field gradient. J. Appl. Phys. 104, 093918
  • SVOBODA, J., 2004. J., 2004. Magnetic Techniques for the Treatment of Materials. Kluwer Academıc Publıshers.. Kluwer Academıc Publıshers.
  • SYVITSKI, J.P.M., 1991. Principles, methods, and application of particle size analysis: Contents. EarthEarth--Sci. Rev. 33, 59--61.
  • VIEIRA, A.M., PERES, AEC., 2007. The effect of amine type, pH, and size range in the flotation of quartz.. Miner. Eng. 20, 1008--1013.
  • WANG, Y., FORSSBERG, E., 1992. Aggregation between magnetite and hematite ultrafines utilizing remanent magnetizationmagnetization.. Miner. Eng. 5, 895--905.
  • YANG, Z.J., XU, X.Y., YUAN, X.Y., 2019. Experimental study on selective flocculation flotation of low-grade tin slime.China. Min. Mag. 28, 212-215, 219 .
  • YIN, W.Z., WANG, D.H., DRELICH, J.W., YANG, B., LI, D., YAO, J., 2019. Reverse flotation separation of hematite from quartz assisted with magnetic seeding aggregation. Miner. Eng. 139, 105873.
  • YUE, T., WU, X.Q., DAI, L., 2019. Effect of magnetic seeding agglomeration on flotation of fine minerals. J. Cent. South Univ. 26, 75-87.
  • ZHANG, M.J., XU, Q., LUO, J.K., 1986. Mechanism of aggregation between fine particles of hematite and magnetite. Nonferrous Met. Eng. 38, 21-26.
  • ZHUO, Q.M., LIU, W.L., XU, H.X., SUN, X.P., ZHANG, H., LIU, W., 2018.. The effect of collision angle on the collision and adhesion behavior of coal particles and bubbles. Processes. 6, 218.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fab7068-3549-44c7-8f06-994776841eec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.