Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
TiO2-ZSM-5/ceramic fiber composite was successfully prepared for the first time by impregnation and applied to remove toluene in the atmosphere and RhB in wastewater. Optional values for TiO2loading and calcination temperature were discussed. The composites were characterized by XRD, SEM, TEM, UV-vis and N2 adsorption-desorption. The results showed that TiO2loading amount affects the crystal formation, distribution, pore size and adsorption capacity for pollutants, which in turn determines the adsorption performance and photocatalytic activity of the composite. Composites calcined at 550 ℃ with 12.7 wt. % TiO2loading can degrade toluene and RhB most effectively, with the maximum degradation rates of 39.99% and 92.70%, respectively. In addition, materials have been proven to have high degradation stability being recycled 4 times. The TiO2-ZSM-5/ceramic fiber prepared in this study can degrade atmospheric and industrial wastewater pollutants. Therefore, TiO2-ZSM-5/ceramic fiber has high comprehensive practical value in the field of environmental pollutant removal.
Czasopismo
Rocznik
Tom
Strony
147--161
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
autor
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
Bibliografia
- [1] HE C., CHENG J., ZHANG X., DOUTHWAITE M., PATTISSON S., HAO Z., Recent advances in the catalytic oxidation of volatile organic compounds: a review based on pollutant sorts and sources, Chem. Rev. 2019, 119 (7), 4471–4568. DOI: 10.1021/acs.chemrev.8b00408.
- [2] ZHAO Q., ZHENG Y., SONG C., LIU Q., JI N., MA D., LU X., Novel monolithic catalysts derived from insitu decoration of Co3O4 and hierarchical Co3O4@ MnOx on Ni foam for VOC oxidation, Appl. Catal. B, 2020, 265, 118552. DOI: 10.1016/j.apcatb.2019.118552.
- [3] MOHAMMAD-REZAEI R., KHALILZADEH B., RAHIMI F., REZAEE P., ARAB S.-S., DERAKHSHANKHAH H., JAYMAND M., Simultaneous removal of cationic dyes from simulated industrial wastewater using sulfated alginate microparticles, J. Mol. Liq. 2022, 363, 119880. DOI: 10.1016/j.molliq.2022.119880.
- [4] SAEED M., MUNEER M., HAQ A.U., AKRAM N.J.E.S., Photocatalysis. An effective tool for photodegradation of dyes. A review, Environ. Sci. Pollut., 2022, 1–19. DOI: 10.1007/s11356-021-16389-7.
- [5] GUO W., GUO T., ZHANG Y., YIN L., DAI Y., Progress on simultaneous photocatalytic degradation of pollutants and production of clean energy. A review, Chemosphere, 2023, 139486. DOI: 10.1016 /j.chemosphere.2023.139486.
- [6] GUO D., FENG D., ZHANG Y., ZHANG Y., ZHAO Y., ZHOU Z., SUN J., QUAN C., CHANG G., SUN S., Car-bon material–TiO₂ for photocatalytic reduction of CO₂ and degradation of VOCs. A critical review, Fuel Proc. Tech., 2022, 231, 107261. DOI: 10.1016/j.fuproc.2022.107261.
- [7] LU M., YANG W., YU C., LIU Q., YE D.J., Plasma-catalytic oxidation of toluene on Ag modified FeOx/SBA-15, Aeros. Air Qual. Res., 2020, 20 (1), 193–202. DOI: 10.4209/aaqr.2019.09.0467.
- [8] GUO Q., ZHOU C., MA Z., YANG X., Fundamentals of TiO₂ photocatalysis: concepts, mechanisms, and challenges, Adv. Mater., 2019, 31 (50), 1901997. DOI: 10.1002/adma.201901997.
- [9] LIANG P., WEI A., ZHANG Y., WU J., ZHANG X., LI S., Immobilisation of TiO₂ films on activated carbon fibres by a hydrothermal method for photocatalytic degradation of toluene, Micro Nano Lett., 2016, 11 (9), 539–544. DOI: 10.1049/mnl.2016.0171.
- [10] TIAN J., TUO B., WANG J., TANG Y., NIE G., YANG Y., Preparation of different crystal types TiO₂ materials and its photodegradation performance in Congo Red wastewater, Phase Trans., 2022, 95 (10), 707–725. DOI: 10.1080/01411594.2022.2107927.
- [11] CHO Y., KIM S., PARK B., LEE C.-L., KIM J.K., LEE K.-S., CHOI I.Y., KIM J.K., ZHANG K., OH S.H., Multiple heterojunction in single titanium dioxide nanoparticles for novel metal-free photocatalysis, Nano Lett., 2018, 18 (7), 4257–4262. DOI: 10.1021/acs.nanolett.8b01245.
- [12] ZHU X., WANG D., HUI S., Research progress of adsorption and photocatalysis of formaldehyde on TiO₂/AC, Ads. Sci. Technol., 2021, 1–16. DOI: 10.1155/2021/8790974.
- [13] SHI J.-W., CUI H.-J., CHEN J.-W., FU M.-L., XU B., LUO H.-Y., YE Z.L., TiO₂/activated carbon fibers photocatalyst: Effects of coating procedures on the microstructure, adhesion property, and photocata-lytic ability, J. Colloid Interf. Sci., 2012, 388 (1), 201–208. DOI: 10.1016/j.jcis.2012.08.038.
- [14] WANG J., SUN S., PAN L., XU Z., DING H., LI W., Preparation and properties of CaCO₃-supported nano-TiO₂ composite with improved photocatalytic performance, Mater., 2019, 12 (20), 3369. DOI: 10.3390/ma12203369.
- [15] SHAO Y., YAN Y., WANG J., JIN Q., XU H., ZHANG X., Co/SBA-16 coating supported on a 3D-printed ceramic monolith for peroxymonosulfate-activated degradation of Levofloxacin, J. Coll. Interf. Sci., 2023, 643, 137–150. DOI: 10.1016/j.jcis.2023.03.112.
- [16] HONG J., KIM J., SELVARAJ R., KIM Y., Chemistry, Immobilization of visible-light-driven photocatalyst g-C₃N₄ on ceramic fiber for degradation of organic dye, Toxic. Environ. Chem., 2021, 103 (1), 18–36. DOI: 10.1080/02772248.2021.1879083.
- [17] YADAV M., GARG S., CHANDRA A., HERNADI K., Immobilization of green BiOX (X= Cl, Br and I) photo-catalysts on ceramic fibers for enhanced photocatalytic degradation of recalcitrant organic pollutants and efficient regeneration process, Cer. Int., 2019, 45 (14), 17715–17722. DOI: 10.1016/j.ceramint. 2019.05.340.
- [18] DENG H., KANG S., WANG C., HE H., ZHANG C., Palladium supported on low-surface-area fiber-based materials for catalytic oxidation of volatile organic compounds, Chem. Eng. J., 2018, 348, 361–369. DOI: 10.1016/j.cej.2018.04.184.
- [19] BAI X., DU Y., XUE W., HU X., FAN J., LI J., LIU E., Enhancement of the photocatalytic synchronous removal of Cr(VI) and RhB over RP-modified flower-like SnS₂, Nanosc. Adv., 2020, 2 (9), 4220–4228. DOI: 10.1039/d0na00489h.
- [20] ZHOU Y., LI M., ZHONG X., ZHU Z., DENG P., LIU H., Hydrophobic composite coatings with photocatalytic self-cleaning properties by micro/nanoparticles mixed with fluorocarbon resin, Cer. Int., 2015, 41 (4), 5341–5347. DOI: 10.1016/j.ceramint.2014.12.090.
- [21] ZHANG Q., LI C., Pure anatase phase titanium dioxide films prepared by mist chemical vapor deposition, Nanomater., 2018, 8 (10), 827. DOI: 10.1016/j.apcatb.2019.118552.
- [22] ZHANG W., WANG Y., HAO M., ZHANG H., LIANG P., Enhanced photocatalytic degradation of organic pollutants under visible light using Ag-modified TiO₂ on activated carbon fibers, Nano., 2021, 16 (10), 2130009. DOI: 10.1142/s1793292021300097.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fab2896-ef4a-4df9-aa62-1d00c51c70d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.