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Abstract

We discuss a processor sharing system with non-homogeneous customers. There are

resources of two types for their service: 1) resource of the first type is discrete, there

are N units (servers) of the resource; 2) resource of the second type (capacity) is

not-necessary discrete. The type of a customer is defined by the amount of first

type resource units which is used for the customer service. Each customer is also

characterized by some random capacity or some amount of the second type resource

which is also used for his service. The total capacity of customers present in the

system is limited by some value V > 0, which is called the memory volume of

the system. The customer capacity and length (the work necessary for service) are

generally dependent. The joint distribution of these random variables also depends

on the customer type. For such systems we determine the stationary distribution

of the number of customers of each type present in the system and stationary loss

probabilities for each type of customers.

1. Introduction

Egalitarian processor sharing systems have been used to model and solve the
various practical problems occurring in the design of computer and commu-
nicating networks. They are used as models of situations when different
customers are served simultaneously by limited amount of system resources
[1], for example, in WEB-servers design [2].
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The Egalitarian Processor Sharing (EPS) discipline was first introduced
by Kleinrock [3] as a limit case for modelling time sharing systems.

The most important theoretical results in procesor sharing systems anal-
ysis (including a solution of the problem of sojourn time determination)
were obtained by Yashkov (see [4, 5]). He is also an author of exhaus-
tive surveys on mathematical methods of processor sharing systems analysis
[2, 6, 7].

During some last years there appear a tremendous number of papers
with new results in processor sharing (see surveys [2, 7]). But only a few of
them consider systems with limited resources and customer length depend-
ing on capacity.

Later on, we shall call customer length the amount of work necessary
for customer’s service, i. e. the service time under condition that there are
no other customers in the system during his presence in it. Analogously, we
shall call residual length of the customer his residual service time after some
time instant under the same condition (see [5]).

Assume that each customer in the system under consideration is charac-
terized by some non-negative random capacity. This random variable can be
interpreted as a part of system’s memory space used by the customer during
his presence in the system. A total sum of customers capacities σ(t) in the
system at arbitrary time t is referred as the total customers capacity. The
random value σ(t) can be limited by some constant value V (0 < V ≤ ∞),
which is called the memory volume of the system.

The purpose of the paper is 1) to present a short survey of some previous
results connected with determination of stationary total capacity character-
isics for classical processor sharing systems (V =∞); 2) to determine some
estimations of loss characteristics for systems with limited memory space
(V < ∞) based on the model with the unlimited one; 3) to investigate
the processor sharing system with limited memory space and customers of
different types.

For the last case, we obtain the stationary distribution of the number
of customers of all types in the system and loss probabilities for each type
of customers.

2. The case of unlimeted memory space and some estimations

A simplest processor sharing model with non-homogeneous customers is a
classical system M/G/1 − EPS in which each customer has additionally
some random capacity ζ, and customer length ξ depends arbitrarily on his
capacity, i.e. the following distribution function is defined:

F (x, t) = P{ζ < x, ξ < t}. (1)
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For this system, Sengupta [8] has obtained the Laplace-Stieltjes trans-
form δ(s) of the total customers capacity in stationary mode:

δ(s) =
1− ρ

1 + aα′
q(s, q)|q=0

, (2)

where α(s, q) is the double Laplace-Stieltjes transform (with respect to x
and t) of the distribution function (1):

α(s, q) = Ee−sσ−qξ =

∫ ∞

0

∫ ∞

0
e−sx−qtdF (x, t), ρ = aβ1 < 1,

where a is an arrival rate of entrance flow of customers, β1 is the first moment
of customer length.

From formula (2), we can (in some cases) determine the relation for the
distribution function D(x) of the total customers capacity σ (this random
variable is unlimited in the system, i.e. V = ∞ and customers are never
lost).

We can use formula (2) for special cases analysis, therefore we can some-
times obtain the wiew of the function D(x). For example, consider the case
when the customer capacity ζ and his length ξ are connected by the relation
ξ = cζ+ξ1, c ≥ 0, where the random variables ζ and ξ1 are independent (such
dependence between customer capacity and his length is true for many real
information systems). Denote by κ1 = Eξ1 the first moment of the random
variable ξ1. Let ϕ(s) = α(s, 0) be the Laplace-Stieltjes transform of the cus-
tomer capacity distribution function L(x) = F (x,∞). In this case we have
[9]: α(s, q) = ϕ(s + cq)κ(s), where κ(s) is the Laplace-Stieltjes transform of
the distribution function of the random variable ξ1. Then the relation (2)
takes the following form:

δ(s) =
1− ρ

1 + a[cϕ′(s)− κ1ϕ(s)]
, (3)

Now, let us assume that customer capacity has an exponential distribu-
tion with the parameter f . In this case, from the relation (3) we obtain

δ(s) =
(1− ρ)(s + f)2

(s + f)2 − ρ1f2 − ρ2f(s + f)
, (4)

where ρ1 = ac/f , ρ2 = aκ1, so that ρ = aβ1 = ρ1 + ρ2.
Now, we can determine the original of the Laplace transform δ(s)/s,

where δ(s) is defined by formula (4), and obtain the wiew of the stationary
distribution function D(x) of total customers capacity:



136 Oleg Tikhonenko

D(x) = 1− (1− ρ)e−fx

2b

[
(ρ2 + b)2e(ρ2+b)fx/2

2− ρ2 − b
− (ρ2 − b)2e(ρ2−b)fx/2

2− ρ2 + b

]
, (5)

where b =
√

ρ2
2 + 4ρ1.

If customer length does not depend on the capacity (c = 0, ρ = ρ2), we
have from the relation (5) that

D(x) = 1− ρe−(1−ρ)fx. (6)

If customer length is proportional to the capacity (c > 0, κ1 = 0), we have
from (5) that

D(x) = 1−
√

ρ

2

[
(1 +

√
ρ)e−(1−√

ρ)fx − (1−√ρ)e−(1+
√

ρ)fx
]
, (7)

where in this case ρ = ρ1.
The generalization of the relation (2) to a non-stationary case was ob-

tained in [10], where it was also shown how to estimate the memory volume
V in order to guarantee inexceeding of given loss probability, if the charac-
teristics of stationary total capacity are known for the system with unlimited
memory space. For example, if we denote by DV (x) the stationary distribu-
tion function of the total customers capacity for the system that differ from
the above classical one only with the fact that its total capacity is limited by
the constant value V , then the loss probability P for such a system satisfies
the following enequality:

P = 1−
∫ V

0
DV (V − x)dL(x) ≤ 1−

∫ V

0
D(V − x)dL(x) = P ∗.

Thus, the value P ∗ is an upper estimation of loss probability for the
system with memory space limited by V . If we choose V given P ∗ so that
the equality ∫ V

0
D(V − x)dL(x) = 1− P ∗

is satisfied, then the real loss probability does not exceed P ∗. If in the system
under consideration only very rare losses are permitted, then the difference
between the values P and P ∗ is inessential.

Note that the loss probability is not exhaustive characteristic of losses,
because its value shows the part of lossing customers, but not the part of
lossing capacity (or, in other words, lossing information). Really, it is obvious
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that customers having large capacity will be lost more often. Therefore, more
objective losses estimation is the value

Q = 1− 1

ϕ1

∫ V

0
xDV (V − x)dL(x),

where ϕ1 = Eζ is the first moment of the random variable ζ. The value Q
is the probability of lossing of a unit of customer capacity. Obviously, the
value Q satisfies the inequality

Q = 1− 1

ϕ1

∫ V

0
xDV (V − x)dL(x) ≤ 1− 1

ϕ1

∫ V

0
xD(V − x)dL(x) = Q∗.

If in the system under consideration only very rare losses are permitted,
then the difference between the values Q and Q∗ is inessential.

For the case, described by the distribution function (6), we have

P ∗ = e−(1−ρ)fV , Q∗ = e−fV

[
1 + fV +

1

ρ

(
eρfV − 1− ρfV

)]
.

For the distribution function (5), we obtain

P ∗ =

{
1− 1− ρ

b

[
a1

1− e−(1−b1)fV

b + ρ2
+ a2

1− e−(1−b2)fV

b− ρ2

]}
e−fV ,

where a1 =
(ρ2 + b)2

2− ρ2 − b
, a2 =

(ρ2 − b)2

2− ρ2 + b
, b1 = −1+

ρ2 + b

2
, b2 = −1+

ρ2 − b

2
;

Q∗ =

{
1 + fV − 2(1− ρ)

b

[
(a1 + a2)fV

8ρ1
+

+a1
1− e−(1−b1)fV

(b + ρ2)2
− a2

1− e−(1−b2)fV

(b− ρ2)2

]}
e−fV .

In particular, for the case, described by the distribution function (7), we find

P ∗ = e−fV

{
1 +

1

2

[
(1 +

√
ρ)(e

√
ρfV − 1)− (1−√ρ)(1 − e−

√
ρfV )

]}
,

Q∗ = e−fV

{
1 + fV +

1

2
√

ρ

[
(1 +

√
ρ)(e

√
ρfV − 1−√ρfV )−

−(1−√ρ)(1− e−
√

ρfV −√ρfV )
]}

.
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Note that in most cases the calculation and estimation of the probability
Q is very complicated. Therefore, we must often restrict ourselves to the
calculation and estimation of the loss probability P .

If it is impossible to determine the wiew of the distribution function
D(x), we can estimate the value P ∗ with the help of approximation of the
function

Φ(x) =

∫ x

0
D(x− u)dL(u),

which is the distribution function of the sum of independent random vari-
ables σ and ζ, by the approximate function of gamma distribution
Φ∗(x) = γ(q, rx)/Γ(q), where γ(q, rx) =

∫ rx
0 tq−1e−tdt is the incomplete

gamma function, Γ(q) = γ(q,∞) is the gamma function. The parameters q
and r of the approximate distribution should be chosen so that its first and
second moments f∗

1 = q/r and f∗
2 = q(q + 1)/r2 should be equal to the first

and second moments of the distribution with the distribution function Φ(x),
repectively. It is obvious that these moments have the form

f1 = δ1 + ϕ1, f2 = δ2 + ϕ2 + 2δ1ϕ1, (8)

where ϕi is a moment of the ith order of the random variable ζ, δi is a
moment of the ith order of the random value σ, i = 1, 2. As it is shown in
[8], for the classical processor sharing system we have

δ1 =
aα11

1− ρ
, δ2 =

aα21

1− ρ
+ 2δ2

1 , (9)

where αij = E(ζiξj) = (−1)i+j ∂i+jα(s, q)

∂si∂qj

∣∣∣∣
s=0,q=0

is the mixed moment of

the (i + j)th order of random variables ζ and ξ, i, j = 1, 2, ....
Thus, the parameters of the distribution function Φ∗(x) should be cho-

sen as follows:

q =
f2
1

f2 − f2
1

, r =
f1

f2 − f2
1

,

where f1 and f2 can be calculated from (8), (9). Hence, we have an approx-
imate formula

P ∗ ∼= 1− Φ∗(V ).

Note that in the case of not very small permissible loss probabilities,
using the estimation P ∗ instead of P , leads to unjustifiely surplus choise of
the memory volume V . Therefore, the analysis of processor sharing systems
with limited resources (including the memory space) is very important.
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3. Processor sharing system with limited memory space

Consider a non-classical processor sharing system that differs from the clas-
sical system M/G/1 − EPS in the following properties.

1. The system contains N units of some homogeneous discrete resource.
There are K types of cutomers in the system. Each m-customer (or customer
of type m), m = 1,K, independently of his arrival time and characteristics of
other customers, requires bm (bm ≤ N) units of the resource for his service.
Denote by am the arrival rate of (stationary Poisson) entrance flow of m-
customers, a = a1 + · · ·+am. Assume for simplisity that b1 < · · · < bK ≤ N .

2. Independently of other customers and his arrival time, each m-
customer is characterized by the random capacity ζm (the random variable
ζm is not necessarily discrete) and random length ξm. The distribution func-
tions

Fm(x, t) = P{ζm < x, ξm < t}, m = 1,K,

are given. Denote by ηm(t) the number of m-customers present in the system
at time t. Then, the random vector η(t) = (η1(t), . . . , ηK(t)) describes the
state of the system, i.e. it shows how many customers of each type are in
the system at time t. The total number of customers in the system at time

t will be refered as η(t) =
K∑

m=1
ηm(t). Denote by σ(t) the total capacity, i.e.

the total sum of capacities of customers that are in the system at this time.

3. The total capacuty σ(t) in the system is limited by constant value
V > 0 which is called the memory volume. The values N and V are not
equal to infinity at the same time.

Denote by Lm(x) = Fm(x,∞) the distribution function of the capacity
of m-customer and denote by Bm(t) = Fm(∞, t) the distribution function
of his length.

If at the arrival time τ of m-customer there are less than bm free units
of the discrete resource in the system, then the customer will be lost having
no effect on further system behaviour.

If the required amount of free resource units is available, the customer
will be nevertheless lost, if his capacity x is such that σ(τ − 0) + x > V .
If there are sufficiently many free discrete resource units at the arrival time
and the condition σ(τ − 0) + x ≤ V is satisfied, then immediately after the
arrival of a customer his service starts; here ηm(τ) = ηm(τ − 0) + 1 and
σ(τ) = σ(τ − 0) + x. If τ is the service termination epoch of m-customer
having capacity x, then ηm(τ) = ηm(τ − 0)− 1 and σ(τ) = σ(τ − 0)− x.

Note that maximum number of customers that are served simultane-
ously is not more than M = [N/b1].
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For the considered system, we find the distribution of the number of
cusomers in the system at an arbitrary time instant in stationary mode, and
stationary loss probabilities for customers of each type.

4. Process and characteristics

Assume that customers in the considered system at an arbitrary time t are
enumerated as random; i.e. if the number of customers is k, then there are
k! ways to enumerate them, and each enumeration can be chosen with the
same probability 1/k!. Denote by νj(t) the number of resource units that
are used by jth customer at time t (νj(t) = bm if it is a customer of type
m). Denote by σj(t) the capacity of this customer. We denote by ξ∗j (t) the
residual length of jth customer in the system from the time t.

One can easily show that the system under cosideration is described by
the Markov process

(
η(t), νj(t), σj(t), ξ

∗
j (t), j = 1, η(t)

)
, (10)

where components νj(t), ξ∗j (t) are absent if η(t) = 0.

Note that in our notations we have σ(t) =
η(t)∑
j=1

σj(t). In what follows, to

simplify the notation, we denote

Rk = (r1, . . . , rk), Yk = (y1, . . . , yk), Rj
k = (r1, . . . , rj−1, rj+1, . . . , rk)

and, similarly,
Y j

k = (y1, . . . , yj−1, yj+1, . . . , yk).

We also assume that r(k) = r1 + · · ·+ rk.
For the components of the vector Rk, we assume that ri ∈ {b1, . . . , bK},

i = 1, k. Denote by [r], where r ∈ {b1, . . . , bK}, the number of type of
customers, if r resource units are used for his service, i.e. m = [r] if r = bm.

Sometimes in the case k = 1, instead of R1 and Y1 we write, respectively,
r1 and y1 ore the values that these components take, and in the case k = 2,
instead of R2 and Y2 we write (r1, r2) and (y1, y2) or their values respectively.
In other words, we sometimes specify vectors of small dimensions by indicat-
ing their components. We also use the notation (Rk, bm) = (r1, . . . , rk, bm)
and (Yk, z) = (y1, . . . , yk, z).

We characterize the process (10) by functions with the following prob-
abilistic sense:
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Gk(x,Rk, Yk, t) = P{η(t) = k, σ(t) < x, νi(t) = ri, ξ
∗
i (t) < yi, i = 1, k},

k = 1,M, r(k) ≤ N ; (11)

Θk(Rk, Yk, t) = P{η(t) = k, νi(t) = ri, ξ
∗
i (t) < yi, i = 1, k} =

= Gk(V,Rk, Yk, t), k = 1,M, r(k) ≤ N. (12)

We also introduce the functions

Πk(Rk, t) = P{η(t) = k, νi(t) = ri, i = 1, k} = lim
y1,...,yk→∞

Θk(Rk, Yk, t),

k = 1,M, r(k) ≤ N ; (13)

P0(t) = P{η(t) = 0} = P{η(t) = 0}, (14)

where 0 = (0, . . . , 0︸ ︷︷ ︸
K

);

Pk(t) = P{η(t) = k} =
∑

r(k)≤N

Πk(Rk, t), k = 1,M. (15)

Assume that N < ∞ or (and) V < ∞. Then, a stationary mode exists
for the system if ρ = aβ1 < ∞, where β1 = (a1β11 + · · · + aKβ1K)/a is the
first moment of the total service time in the system, i.e. if t → ∞, then
η(t) ⇒ η, σ(t) ⇒ σ, νj(t) ⇒ νj and ξ∗j (t) ⇒ ξ∗j in the weak convergence
sense. So, the following limits exist:

gk(x,Rk, Yk) = lim
t→∞

Gk(x,Rk, Yk, t), k = 1,M, r(k) ≤ N ; (16)

θk(Rk, Yk) = lim
t→∞

Θk(Rk, Yk, t) = gk(V,Rk, Yk), k = 1,M, r(k) ≤ N ; (17)

πk(Rk) = lim
t→∞

Πk(Rk, t) = lim
y1,...,yk→∞

θk(Rk, Yk), k = 1,M, r(k) ≤ N ; (18)

p0 = lim
t→∞

P0(t); (19)

pk = lim
t→∞

Pk(t) =
∑

r(k)≤N

πk(Rk), k = 1,M. (20)

Note that the functions Gk(x,Rk, Yk, t), gk(x,Rk, Yk) and Θk(Rk, Yk, t),
θk(Rk, Yk) are symmetric with respect to simultaneous permutations of com-
ponents with the same indices of the vectors Rk and Yk due to our random
enumeration of customers in the system.
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Denote by Hm(x) the probability that an arbitrary m-customer has a
capacity less than x and a length greater than or equal to y, i.e.

Hm(x, y) = P{ζm < x, ξm ≥ y} =

∫ x

v=0

∫ ∞

u=y
dFm(v, u) =

= P{ζm < x} −P{ζm < x, ξm < y} = Lm(x)− Fm(x, y). (21)

5. Stationary distribution of the number of customers

Using the method of auxiliary variables [11] and taking into account the
symmetric properties, we can write out partial differential equations for the
functions (11), (12) and (14):

∂P0(t)

∂t
= −P0(t)

K∑

m=1

amLm(V ) +

K∑

m=1

∂Θ1(bm, y, t)

∂y

∣∣∣∣
y=0

; (22)

∂Θ1(bm, y, t)

∂t
− ∂Θ1(bm, y, t)

∂y
+

∂Θ1(bm, y, t)

∂y

∣∣∣∣
y=0

=

= amP0(t)Fm(V, y)−
∑

j: bj≤N−bm

aj

∫ V

0
G1(V − x, bm, y, t)dLj(x)+

+
∑

j: bj≤N−bm

∂Θ2((bm, bj), (y, z), t)

∂z

∣∣∣∣
z=0

, m = 1,K ; (23)

∂Θk(Rk, Yk, t)

∂t
− 1

k

k∑

j=1

[
∂Θk(Rk, Yk, t)

∂yj
− ∂Θk(Rk, Yk, t)

∂yj

∣∣∣∣
yj=0

]
=

=
1

k

k∑

j=1

a[rj ]

∫ V

0
Gk−1(V − x,Rj

k, Y
j
k , t)dxF[rj ](x, yj)−

−
∑

m: bm≤N−r(k)

am

∫ V

0
Gk(V − x,Rk, Yk, t)dLm(x)+

+
∑

m: bm≤N−r(k)

∂Θk+1((Rk, bm), (Yk, z), t)

∂z

∣∣∣∣
z=0

, k = 2,M, r(k) ≤ N. (24)

Passing to the limit as t→∞ in the equations (22)–(24), we obtain the
following equations for stationary functions (16), (17), (19):

0 = −p0

K∑

m=1

amLm(V ) +

K∑

m=1

∂θ1(bm, y)

∂y

∣∣∣∣
y=0

; (25)
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−∂θ1(bm, y)

∂y
+

∂θ1(bm, y)

∂y

∣∣∣∣
y=0

= amp0Fm(V, y)−

−
∑

j: bj≤N−bm

aj

∫ V

0
g1(V−x, bm, y)dLj(x)+

∑

j: bj≤N−bm

∂θ2((bm, bj), (y, z))

∂z

∣∣∣∣
z=0

,

m = 1,K ; (26)

−1

k

k∑

j=1

[
∂θk(Rk, Yk)

∂yj
− ∂θk(Rk, Yk)

∂yj

∣∣∣∣
yj=0

]
=

=
1

k

k∑

j=1

a[rj ]

∫ V

0
gk−1(V − x,Rj

k, Y
j
k )dxF[rj ](x, yj)−

−
∑

m: bm≤N−r(k)

am

∫ V

0
gk(V − x,Rk, Yk)dLm(x)+

+
∑

m: bm≤N−r(k)

∂θk+1((Rk, bm), (Yk, z))

∂z

∣∣∣∣
z=0

, k = 2,M, r(k) ≤ N. (27)

In stationary mode, we have boundary conditions for equations (25)–
(27) described by the following equilibrium equations:

∂θ1(bm, y)

∂y

∣∣∣∣
y=0

= amp0Lm(V ), m = 1,K ; (28)

∂θk((Rk−1, bm), (Yk−1, z))

∂z

∣∣∣∣
z=0

= am

∫ V

0
gk−1(V − x,Rk−1, Yk−1)dLm(x),

k = 2,M, bm ≤ N − r(k−1). (29)

Let us explain the meaning of equations (28) and (29) for the case
k = 2,M , N ≥ 2. If, at some time t in stationary mode, the considered
system was in the state {η = k − 1, νj = rj, ξ

∗
j < yj , j = 1, k − 1}, then the

probability that m-customer will enter the system during small time interval
∆t equals

am∆t

∫ V

0
gk−1(V − x,Rk−1, Yk−1)dLm(x) + o(∆t).

In stationary mode this probability, obviously, coincides with the proba-
bility of the inverse transition, i.e. with the probability that within time
interval ∆t the system will pass to this state upon termination of service
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of an m-customer. Taking into account the above-mentioned symmetry of
the functions θk(Rk, Yk) with respect to permutations, the latter probabil-

ity equals
∂θk((Rk−1, bm), (Yk−1, z))

∂z

∣∣∣∣
z=0

∆t + o(∆t), whence (29) follows.

Equality (28) is deduced similarly.
To the relations (25)–(29), we should add the normalization condition

which can be represented as follows:

p0 +

M∑

k=1

∑

r(k)≤N

πk(Rk) = 1. (30)

Now introduce the function Φy
j (x) =

∫ y
0 Hj(x, u)du. Its meaning be-

comes obvious if we use the representation Fj(x, u) = Lj(x)Bj(u | ζj < x),
where Bj(u | ζj < x) = P{ξj < u | ζj < x} is the conditional distribution
function of the length of a j-customer given that his capacity is less than x.
Then (21) implies

Φy
j (x) = Lj(x)

∫ y

0
[1−Bj(u | ζj < x)]du.

Let us also introduce the following notation for the Stieltjes convolution:

F1 ∗ · · · ∗ Fn(x) = ∗
j=1

n
Fj(x).

In the particular case F1 = · · · = Fn = F , the value of n-order convolution
of the function F at the point x will be denoted by F

(n)
∗ (x).

Then, using the above-mentioned symmetry property of functions (16)
and (17) and taking into account the boundary conditions (28) and (29),
one can show by direct substitution that the solution of equations (25)–(27)
can be represented as

gk(x,Rk, Yk) = C ∗
j=1

k
Φ

yj

[rj]
(x)

k∏

j=1

a[rj ], k = 1,M, r(k) ≤ N, (31)

where C is a constant to be specified from the normalization condition (30).
From (17) it follows that

θk(Rk, Yk) = C ∗
j=1

k
Φ

yj

[rj]
(V )

k∏

j=1

a[rj ], k = 1,M, r(k) ≤ N. (32)
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Introduce the notation

Aj(x) =

∫ x

u=0

∫ ∞

y=0
udFj(u, y), j = 1,K.

The function Aj(x) has meaning of ”partial” mathematical expectation [12]
of the random variable ξj with respect to the event {ζj < x}:

Aj(x) = E(ξj, ζj < x) = E(ξj | ζj < x)Lj(x),

where E(ξj | ζj < x) is the conditional mathematical expectation of the
length of a customer of type j given that his capacity is less than x. It is
easily seen that

Aj(x) = lim
y→∞

Φy
j (x) = Lj(x)

∫ ∞

0
[1−Bj(u | ζj < x)]du.

Using relation (18), we obtain

πk(Rk) = C ∗
j=1

k
A[rj ](V )

k∏

j=1

a[rj ], k = 1,M, r(k) ≤ N. (33)

It follows from (20) that

pk = C
∑

r(k)≤N

∗
j=1

k
A[rj ](V )

k∏

j=1

a[rj ], k = 1,M.

The latter relation and normalization condition (30) finally yield

pk = p0

∑

r(k)≤N

∗
j=1

k
A[rj ](V )

k∏

j=1

a[rj ], k = 1,M, (34)

where

p0 = C =



1 +
L∑

k=1

∑

r(k)≤N

∗
j=1

k
A[rj ](V )

k∏

j=1

a[rj ]




−1

. (35)

Now, let us pass to the traditional [13] representation of states of the
system under consideration, using a stationary analogue η of the vector
η(t) introduced in section 3. Denote by km, m = 1,K, the number of m-
customers present in the system at an arbitrary time in stationary mode

(km ≥ 0). Then, we have k =
K∑

m=1
ki, where k = 0,M . We shall characterize
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a state of the system by the vector k = (k1, . . . , kK). We introduce also the

vector b = (b1, . . . , bK) and scalar product (b,k) =
K∑

m=1
kmbm. Denote by

N0 the set of integer non-negative numbers. Obviously, the space of values
of the vector k is the set S : = {k ∈ N

K
0 : (b,k) ≤ N}, where N

K
0 is K-

order Cartesian product N
K
0 = N0 × · · · ×N0︸ ︷︷ ︸

K

. Then, from (33), taking into

account the symmetry of the functions πk(Rk) with respect to permutations,
we obtain that stationary probability g(k) = P{η = k} that there are km

customers of type m, m = 1,K, in the system is defined by the following
relation:

g(k) = p0k! ∗
m=1

K
A

(km)
m∗ (V )

K∏

m=1

akm
m

km!
, k ∈ S. (36)

For such a representation, the probability p0 takes the form

p0 =

[
∑

k∈S

k! ∗
m=1

K
A

(km)
m∗ (V )

K∏

m=1

akm
m

km!

]−1

(37)

that is equivalent to the relation (35).

6. Loss probability

Finding the stationary loss probability Pm, m = 1,K, for a customer of
type m is based on the fact that in stationary mode the average number
of customers accepted for service within a time unit (i.e. customers that
entered the system during this time period and were not lost) is equal to the
average number of customers whose service was terminated within this time
period. Thus, taking into account the symmetry of θk(Rk, Yk) with respect
to the above-mentioned permutations of components of vectors (Rk, Yk), we
obtain the following equilibrium equation:

am(1− Pm) =

M∑

j=1

∑

r(j−1)≤N−bm

∂θj((Rj−1, bm), (∞j−1, z))

∂z

∣∣∣∣
z=0

, m = 1,K,

where ∞i = (∞, . . . ,∞︸ ︷︷ ︸
i

). Taking into account (32) and (35), the latter rela-

tion yields

Pm = 1− p0



Lm(V ) +

M∑

j=1

∑

r(j)≤N−bm

Lm ∗
(
∗

l=1

j
A[rl]

)
(V )

j∏

l=1

a[rl]



 . (38)
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Then, the total loss probability is defined by the relation

P =
1

a

K∑

m=1

amPm =

= 1− p0

a

K∑

m=1

am



Lm(V ) +
M∑

j=1

∑

r(j)≤N−bm

Lm ∗
(
∗

l=1

j
A[rl]

)
(V )

j∏

l=1

a[rl]



 .

If customers lengths are independent of their capacities for customers
of all types, then we obviously have Am(x) = βm 1Lj(x), m = 1,K .

For presenting the loss probability of m-customer in another (tradi-
tional) form, we introduce subsets of states Sm : = {k ∈ S : (b,k) ≤
N − bm}, m = 1,K . Then, from relation (38), we have

Pm = 1− p0

∑

k∈Sm

k!Lm ∗
(
∗

j=1

K
A

(kj)
j∗

)
(V )

K∏

j=1

aj
kj

kj !
. (39)

Note that direct application of obtained relations happens to be incon-
venient for calculation in the general case. However, their direct application
is possible in certain particular cases.

7. Analysis of particular cases

We analyze here only a few of simple particular cases.
1. There is only one type of customers. Let us assume that each

customer needs only one unit of the discrete resource (K = 1, b1 = 1,
a1 = a), N ≤ ∞, V < ∞. For example, if N < ∞, then we have a system
with limited number of customers.

We omit indexes in the notation for such systems. For example, we write
A(x) instead of A1(x), F (x, t) instead of F1(x, t), etc.

In this case, relations (34), (35) and (38) take the form

pk = p0a
kA

(k)
∗ (V ), k = 1, N, p0 =

[
1 +

N∑

k=1

akA
(k)
∗ (V )

]−1

,

P = 1− p0



L(V )−
N−1∑

j=1

L ∗A
(j)
∗ (V )



 .

Assume additionally that customer capacity has an exponential distri-
bution with parameter f , and let the customer length be proportional to his
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capacity (ξ = cζ, c > 0). Introduce the notation ρ = ac/f . Then, after some
calculations, we obtain:

pk = p0ρ
k

[
1− e−fV

2k−1∑

i=0

(fV )i

i!

]
, k = 1, N ;

p0 =

{
N∑

k=0

ρk

[
1− e−fV

2k−1∑

i=0

(fV )i

i!

]}−1

;

P = 1− p0

N−1∑

k=0

ρk

[
1− e−fV

2k∑

i=0

(fV )i

i!

]
.

In particular, if N =∞, we have

p0 =






1− ρ

1−√ρe−fV
[
sinh(

√
ρfV ) +

√
ρ cosh(

√
ρfV )

] , if ρ 6= 1,

1 + e−2fV

1 + fV
, if ρ = 1;

P = p0e
−fV cosh(

√
ρfV ).

2. Discrete case (V = ∞). Now, from the definition of the function
Aj(x) we have that Aj(∞) = lim

x→∞
Aj(x) = βj 1. Therefore, when V = ∞,

relations (34), (35), (38) take the form

pk = p0

∑

r(k)≤N

k∏

j=1

a[rj ]β[rj ] 1, k = 1,M ; (40)

p0 =



1 +

M∑

k=1

∑

r(k)≤N

k∏

j=1

a[rj ]β[rj ] 1




−1

; (41)

Pm = 1− p0



1 +

M∑

j=1

∑

r(j)≤N−m

j∏

l=1

a[rl]β[rl] 1



 . (48)

Denoting by ρm = amβm1, m = 1,K, we obtain that in this case rela-
tions (36), (37), (39) take the form:

g(k) = p0k!
K∏

m=1

ρm
km

km!
, k ∈ S; p0 =

[
∑

k∈S

k!
K∏

m=1

ρm
km

km!

]−1

;
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Pm = 1− p0

∑

k∈Sm

k!

K∏

j=1

ρj
kj

kj !
.

In particular, if all the customers are the customers of the same type
(K = 1, b1 = 1), then we have the usual processor sharing system with
limeted number of customers (ρ = aβ1):

pk =
(1− ρ)ρk

1− ρN+1
, k = 0, N ; P =

(1− ρ)ρN

1− ρN+1
.

3. There are two types of customers, a customer of the second
type needs all the units of discrete resource for his service. Let
K = 2. Assume that a customer of the first type needs one unit of discrete
resource for his service, but a customer of the second type needs all the units
of discrete resource, i.e. b1 = 1, b2 = N .

In this case, from relations (34), (35) we find that the distribution of
number of customers in the system takes the form

p0 =

[
1 +

N∑

k=1

a1
kA

(k)
1∗ (V ) + a2A2(V )

]−1

;

p1 = p0 [a1A1(V ) + a2A2(V )] ; pk = p0a1
kA

(k)
1∗ (V ), k = 2, N.

From relation (38) we have the following formulas for loss probabilities:

P1 = 1− p0



L1(V ) +
N−1∑

j=1

a1
jL1 ∗ A

(j)
1∗ (V )



 ; P2 = 1− p0L2(V ).

Let, for example, Li(x) = 1 − e−fix and customers lengths are propor-
tional to their capacities: ξi = ciζi, i = 1, 2. In this case, we have

Ai(x) = ci

∫ x

0
udLi(u) =

ci

fi

[
1− (1 + fix)e−fix

]
, i = 1, 2.

The formulas for p0 and loss probabilities take the form

p0 =

{
1 +

N∑

k=1

ρ1
k

[
1− e−f1V

2k−1∑

i=0

(f1V )i

i!

]
+ ρ2

[
1− (1 + f2V )e−f2V

]}−1

;

P1 = 1− p0




1− e−f1V +
N−1∑

j=1

ρ1
j

[
1− e−f1V

2j∑

i=0

(f1V )i

i!

]


 ;

P2 = 1− p0

(
1− e−f2V

)
.
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