PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ecological and Economical Aspects of Modern Modeling of Thread Rolling Process

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ekologiczne i ekonomiczne aspekty nowoczesnego modelowania procesu walcowania gwintów
Języki publikacji
EN
Abstrakty
EN
In this study, a modern way to develop a numerical model of the thread rolling process was shown by using variational formulation and the finite element method also the effect of the main process parameters were analyzed. The thread rolling process was considered a geometrical, physical and thermal nonlinear problem with unknown boundary conditions in the contact area of the system, such as the tool and workpiece. The nonlinearity of the material was described using the incremental model, making allowance for the effects of strain, strain rate and temperature history. The work pieces (pipe or bar) have been considered treating an object as a body which can undergo thermo-elastic strains (in the range of reversible strain), thermo, viscous, plastic and phasis (in the range of permanent strains). This body (thermo-elastic/thermo-visco-plastic-phasis) has been designated as TE/TVPF. The material model was prepared making use of Huber-Mises-Hencky’s nonlinear condition of thermo-plasticity, the associated law of flow and the mixed (isotropic-kinematical) strain hardening. The state of material after pre-processing was also taken into consideration introducing the initial conditions of displacements, strains, stresses, temperature and their rates. Then, the incremental functional as the total enthalpy of the system, were derived. From stationary condition of this functional, nonlinear variational equation of motion and heat transfer for object on the typical incremental step time was derived.
PL
W pracy przedstawiono nowoczesny sposób opracowania numerycznego modelu procesu walcowania gwintów przy wykorzystaniu rachunku wariacyjnego i Metody Elementów Skończonych oraz analizowano wpływ najważniejszych parametrów obróbki. Proces walcowania gwintów rozpatrywano jako geometrycznie, fizycznie oraz termicznie nieliniowy problem, z nieznanymi warunkami brzegowymi w strefie kontaktu narzędzia i przedmiotem. Opisu nieliniowości materiału dokonano modelem przyrostowym uwzględniając wpływ historii odkształceń, prędkości odkształceń i temperatury. Przedmiot (pręt lub rurę) traktuje się, jako ciało, w którym mogą wystąpić odkształcenia termo-sprężyste (w zakresie odkształceń odwracalnych) oraz termiczne, lepkie, plastyczne i fazowe (w zakresie odkształceń nieodwracalnych), z nieliniowym umocnieniem. Ciało to oznaczono skrótowo TE/TVPF (termo-sprężyste/termo-lepko-plastyczno-fazowe). Do budowy modelu materiałowego zastosowano nieliniowy warunek termo-plastyczności Hubera-Mises'a-Hencky'ego, stowarzyszone prawo płynięcia oraz wzmocnienie mieszane (izotropowo-kinematyczne). Uwzględniono również stan materiału po obróbkach poprzedzających przez wprowadzenie początkowych stanów: przemieszczeń, naprężeń, odkształceń, temperatury i ich prędkości. Model matematyczny uzupełniono przyrostowymi równaniami ruchu ciepła oraz warunkami jednoznaczności. Następnie, wprowadzono funkcjonał przyrostowy całkowitej entalpii układu. Z warunku stacjonarności tego funkcjonału wyprowadzono wariacyjne, nieliniowe równanie ruchu ciepła w obiekcie dla typowego kroku przyrostowego.
Rocznik
Tom
Strony
122--142
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
  • Politechnika Koszalińska
Bibliografia
  • 1. Bathe, K.J. (1982). Finite element procedures in engineering analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA.
  • 2. Bohdal, Ł., Walczak, P. (2013). Eco–modeling of metal sheet cutting with disc shears. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 15, 863-872.
  • 3. Bohdal, L., Kukielka, L. (2014). Application of variational and FEM methods to the modelling and numerical analysis of guillotining process for geometrical and physical nonlinearity. Mechanika, 20(2), 197-204.
  • 4. Bohdal, L., Kukielka, L., Kukielka, K., Kulakowska, A., Malag, L., Patyk, R. (2014). Three Dimensional Finite Element Simulation of Sheet Metal Blanking Process. Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 430-435.
  • 5. Chodor, J., Kukielka, L. (2014). Using Nonlinear Contact Mechanics in Process of Tool Edge Movement on Deformable Body to Analysis of Cutting and Sliding Burnishing Processes. Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 339-344.
  • 6. Domblesky, J.P., Feng F. (2002). Two-dimensional and three-dimensional finite element models of external thread rolling. Professional Engineering Publishing, 216(4), 507-517.
  • 7. Forysiewicz, M., Kukielka, L., Gotowala, K. (2016). Finite element simulation of physical phenomena in real conditions of a single grain cutting process. Novel Trends in Production Devices and Systems "Materials Science Forum", 862, 288-297.
  • 8. Kaldunski, P., Kukielka, L., (2014). Numerical Analysis and Simulation of Drawpiece Forming Process by Finite Element Method, Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 153-158.
  • 9. Kowalik, M., Rucki, M., Paszta, P., Gołębski, R. (2016). Plastic deformations of measured object surface in contact with undeformable surface of measuring tool. Measurement Science Review. 16(5), 254-259.
  • 10. Kukiełka, K. (2009). Modelling and numerical analysis of the states of deformations and stresses in the surface layer of the trapezoidal and round threads rolled on cold. PhD Thesis, Koszalin University of Technology. (in Polish).
  • 11. Kukiełka, K., Kukiełka, L. (2013). External thread rolling head. The polish patent No PL402652–A1, PL220175–B1, 4.02.2013. (in Polish).
  • 12. Kukiełka, K. (2014). Effective numerical model to analyze the trapezoidal thread rolling process with finite element method. Mechanik, 11, 156-167. (in Polish).
  • 13. Kukielka, K., Kukielka, L., Bohdal, L., Kulakowska, A., Malag, L., Patyk, R. (2014). 3D Numerical Analysis the State of Elastic/Visco–Plastic Strain in the External Round Thread Rolled on Cold. Applied Mechanics and Materials „Novel Trends in Production Devices and Systems”, 474, 436-441.
  • 14. Kukielka, K. (2016). Ecological Aspects of the Implementation of New Technologies Processing for Machinery Parts. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 18, 137-157.
  • 15. Kukielka K. (2017). Numerical simulations of the thread rolling process as ecological and economical research tool in the implementation of modern technologies. Rocznik Ochrona Środowiska (Annual Set of Environment Protection), 19.
  • 16. Kukiełka, L. (1994). Theoretical and experimental foundations of surface roller burnishing with the electrocontact heating. Book WM nr 47. WSI Koszalin. (in Polish)
  • 17. Kukielka, L. (1999). Application of the variational and finite element methods to dynamic incremental nonlinear analysis in the burnishing rolling operation. ESM'99 - Modelling And Simulation A Tool For The Next Millennium, II, 221-225.
  • 18. Kukielka, L., Krzyzynski T. (2000). New thermo-elastic thermo-visco-plastic material model and its application. Zeitschrift Fur Angewandte Mathematik Und Mechanik, Vol. 80, supplement: 3, S595-S596 (2000).
  • 19. Kukielka, L. (2001). Mathematical modelling and numerical simulation of nonlinear deformation of the asperity in the burnishing cold rolling operation. Computational Methods in Contact Mechanics V, Book Series: Computational and Experimental Methods, 5, 317-326.
  • 20. Kukiełka, L. (2002). Bases of engineering research. PWN, Warsaw. (in Polish).
  • 21. Kukielka, L. (2002). Non-linear analysis of heat transfer in burnishing rolling operation. Advanced computational methods in heat transfer VII. Computational studies, WITPRESS, 4, 405-414.
  • 22. Kukielka, L., Kustra, J. (2003). Numerical analysis of thermal phenomena and deformations in processing zone in the centerless continuous grinding process. Surface treatment VI: computer methods and experimental measurements for surface treatment effects. Computational and experimental methods, Eds Brebbia, C. A., DeHosson, J.T.M; Nishida, S. I., WITPRESS, 7, 109-118.
  • 23. Kukielka, L., Kustra, J., Kukielka, K. (2005). Numerical analysis of states of strain and stress of material during machining with a single abrasive grain. Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII, Southampton-Boston, WITPRESS, 57-66.
  • 24. Kukielka, L., Kukielka, K. (2006). Numerical analysis of the process of trapezoidal thread rolling. High Performance Structures and Materials III, Southampton-Boston, WITPRESS, 663-672.
  • 25. Kukielka, L., Kukielka, K. (2007). Numerical analysis of the physical phenomena in the working zone in the rolling process of the round thread. Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VIII, Southampton-Boston, WITPRESS, 125-124.
  • 26. Kukiełka, L. (2010). New damping of models of metallic materials and its application in non–linear dynamical cold processes of metal forming. The 13th International Conference Metal Forming 2010, Steel Research International, Toyohashi, 81, 1482-1485.
  • 27. Kukielka, L., Geleta, K., Kukielka, K. (2012). Modelling and Analysis of Nonlinear Physical Phenomena in the Burnishing Rolling Operation with Electrical Current. Steel Research International, Special Edition: 14th International Conference Metal Forming, Kraków, 1379-1382.
  • 28. Kukielka, L., Geleta, K., Kukielka, K. (2012). Modelling of Initial and BoundaryProblems with Geometrical and Physical Nonlinearity and its Applicationin Burnishing Processes. Steel Research International, Special Edition:14th International Conference Metal Forming, Krakow, 1375-1378.
  • 29. Kukiełka, L., Kukiełka, K. (2012). The modern method of modeling and analysis precision machining processes auto parts. Environmental aspects of the use of new technologies in transport, Book of Mechanical Engineering, No 235 of Mechanical Faculty, Koszalin University of Technology. Koszalin, 109-128 (in Polish).
  • 30. Kukiełka, L., Bohdal, Ł., Chodór, J., Forysiewicz, M., Geleta, K., Kałduński P.,Kukiełka, K., Patyk, R., Szyc, M. (2012). Numerical analysis of selected processes precision machining of automotive parts. Environmental aspects of the use of new technologies in transport, Book of Mechanical Engineering No 235 of Mechanical Faculty, Koszalin University of Technology, Koszalin. 129-194.
  • 31. Kukielka, L., Kukielka, K., Kulakowska, A., Patyk, R., Malag, L., Bohdal, L. (2014). Incremental Modelling and Numerical Solution of the Contact Problem between Movable Elastic and Elastic/Visco–Plastic Bodies and Application in the Technological Processes. Applied Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 159-165.
  • 32. Kukiełka, L., Kukiełka, K. (2015). Modelling and analysis of the technological processes using finite element method. Mechanik, 88, 317-340.
  • 33. Kukielka, L., Szczesniak, M., Patyk, R., Kulakowska, A., Kukielka, K., Patyk S., Gotowala, K., Kozak, D. (2016). Analysis of the states of deformation and stress in the surface layer of the product after the burnishing cold rolling operation. Novel Trends in Production Devices and Systems "Materials Science Forum".
  • 34. Kulakowska, A., Patyk, R., Kukielka, L. (2009). Numerical analysis and experimental researches of burnishing rolling process of workpieces with real surface. WMSCI 2009 – The 13th World Multi–Conference on Systemics, Cybernetics and Informatics, Jointly with the 15th International Conference on Information Systems Analysis and Synthesis, ISAS, 2, 63-68.
  • 35. Kulakowska, A., Kukielka, L., Kukielka, K., Malag, L., Patyk, R., Bohdal, L.(2014). Possibility of steering of product surface layers properties in burnishing rolling process. Applied Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 442-447.
  • 36. Kusnerova, M., Valicek, J., Harnicarova, M., Hryniewicz, T., Rokosz, K., Palkova, Z., Vaclavik, V., Repka, M., Bendova, M. (2013). A Proposal for Simplifying the Method of Evaluation of Uncertainties in Measurement Results. Measurement Science Review, 13(1), 1-6.
  • 37. Łyczko, K. (2010). External thread rolling technology. WNT, Warszawa. (in polish).
  • 38. Malag, L., Kukielka, L., Kukielka, K., Kulakowska, A., Patyk, R., Bohdal, L. (2014). Problems Determining of the Mechanical Properties of Metallic Materials from the Tensile Test in the Aspect of Numerical Calculations of the Technological Processes. Applied Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 454-459.
  • 39. Myslinski, P., Precht, W., Kukielka, L, et al. (2004). A possibility of application of MTDIL to the residual stresses analysis – The hard coating-substrate system. Journal Of Thermal Analysis And Calorimetry, 77(1), 253-258 (2004).
  • 40. Nadolny, K., Plichta, J., Sutowski, P. (2014). Regeneration of grinding wheel active surface using high-pressure hydro-jet. Journal Of Central South University, 21(8), 3107-3118.
  • 41. Olszak, W. (2008). Machining. WNT, Warszawa. (in polish)
  • 42. Patyk, R., Kukielka, L. (2008). Optimization of geometrical parameters of regular triangular asperities of surface put to smooth burnishing. The 12th International Conference Metal Forming 2008, Steel Research International, Kraków, 2, 642-647.
  • 43. Patyk, R. (2010). Theoretical and experimental basis of regular asperities about triangular outline embossing technology. The 13th International Conference Metal Forming 2010, Steel Research International, 81, Toyohashi, 190-193.
  • 44. Patyk, R., Kukielka, L., Kukielka, K., Kulakowska, A., Malag, L., Bohdal, L. (2014). Numerical Study of the Influence of Surface Regular Asperities Prepared in Previous Treatment by Embossing Process on the Object Surface Layer State after Burnishing. Applied Mechanics and Materials “Novel Trends in Production Devices and Systems”, 474, 448-453.
  • 45. Perec, A. (2016). Abrasive suspension water jet cutting optimization using orthogonal array design. International Conference on Manufacturing Engineering and Materials, ICMEM 2016, 6-10 June 2016, Nový Smokovec. Procedia Engineering, 149, 366- 373.
  • 46. Perec, A., Pude, F., Stirnimann, J., Wegener, K. (2015). Feasibility study on the use of fractal analysis for evaluating the surface quality generated by waterjet. Tehnički vjesnik, 22(4), 879-883.
  • 47. Rokosz, K., Hryniewicz, T. (2016). XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing. World Scientific News, 37, 232-248.
  • 48. Skoczylas, A., Zaleski K. (2015). Effect of Plasma Cutting Parameters upon Shapes of Bearing Curve of C45 Steel Surface. Advances in Science and Technology Research Journal, 9(27), 78-82.
  • 49. Sutowski, P., Nadolny, K. (2016). The identification of abrasive grains in the decohesion process by acoustic emission signal patterns. International Journal Of Advanced Manufacturing Technology, 87(1-4), 437-450.
  • 50. Staniszewski, B. (1980). Heat transfer. PWN, Warsaw.
  • 51. Valicek, J., Drzik, M., Hryniewicz, T., Harnicarova M., Rokosz K, Kusnerova M., Barcova K., Brazina D. (2012). Non-Contact Method for Surface Roughness Measurement After. Machining. Measurement Science Review, 12(5), 184-188.
  • 52. Zaleski, K., Bławucki, S. (2015). Evaluation of the Effectiveness of the Shot Peening Process for Thin-Walled Parts Based on the Diameter of Impression Produced by the Impact of Shot Media. Advances in Science and Technology Research Journal, 9(26), 77-82.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fa2b939-4aa2-4f23-a507-10a26f64ac85
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.