Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
There are two main parts to the paper, both connected to Benford’s Law. In the first, we present a generalization of the averaging theorem of Flehinger. In the second, we study the connection between multiplicative infinite divisibility and Benford’s Law, ending with a variant of the Lindeberg-Feller theorem that describes a rather specific triangular array model leading to Benford behavior.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
175--185
Opis fizyczny
Bibliogr. 6 poz., wykr.
Twórcy
autor
- UCSD, Mathematics Department, 9500 Gilman Dr La Jolla, CA 92093-0112, U.S.A.
Bibliografia
- [1] F. Benford, The law of anomalous numbers, Proc. Amer. Phil. Soc. 78 (1938), pp. 551-572.
- [2] B. J. Fiehinger, On the probability that a random integer has initial digit A, Amer. Math. Monthly 73 (10) (1966), pp. 1056-1061.
- [3] D. E. Knuth, The Art of Computer Programming, Vols. 2-3, Addison-Wesley, Reading, MA, 1997.
- [4] P. Lévy, Laddition des variables aléatoires définies sur une circonférence, Bull. Soc. Math. France 67 (1939), pp. 1-41.
- [5] H. Robbins, On the equidistribution of sums of independent random variables, Proc. Amer. Math. Soc. 4 (1953), pp. 786-799.
- [6] P. D. Scott and M. Fasli, Benford's law: An empirical investigation and a novel explanation, Technical report, Department of Computer Science, Univ. of Essex, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7fa294aa-1f02-4007-a5f8-5933f85015bc