Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the microstructure, chemical and phase composition of thin scale, obtained as a result of high-temperature corrosion of X20Cr13 stainless steel. Samples were exposed to gas atmosphere of the following composition: 0.25 vol.% of SO2 and 99.75 vol.% of Ar at 600 °C for 5 h. As a consequence, thin compact scale was formed on steel surface. This scale consisted of three different zones. An amorphous zone was formed close to steel surface. Then, nanocrystalline zone could be observed. Finally, larger grains were formed during the corrosion process. The analysis of the chemical composition revealed higher concentration of chromium near steel surface. In contrast, to chromium, the content of iron, increased near the scale surface. It was found out that the (Cr, Mn, Fe)5O12 phase appeared in the thin scale.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1607--1612
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology 1Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
autor
- BAM Federal Institute for Materials Research and Testing, Department of Materials Engineering, Berlin, Germany
autor
- BAM Federal Institute for Materials Research and Testing, Department of Materials Engineering, Berlin, Germany
autor
- BAM Federal Institute for Materials Research and Testing, Department of Materials Engineering, Berlin, Germany
autor
- AGH University of Science and Technology 1Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland
Bibliografia
- [1] M. Schulte, A. Rahmel, M. Schütze, Oxid. Met. 49, 33 (1998).
- [2] M. Danielewski, K. Natesan: Oxid. Met. 12, 227 (1977).
- [3] W. Schulz, M. Nofz, M. Feigl, I. Dörfel, R.S. Neumann, A. Kranzmann, Corros. Sci. 68, 44 (2013).
- [4] F. Liu, J. Tang, T. Jonsson, S. Canovic, K. Segerdahl, J. Svensson, M. Halvarsson, Oxid. Met. 66, 295 (2006).
- [5] S. Jianian, Z. Longjiang, L. Tiefan, Oxid. Met. 48, 347 (1997).
- [6] V. Lepingle, G. Louis, D. Allué, B. Lefebvre, B. Vandenberghe, Corros. Sci. 50, 1011 (2008).
- [7] A. Ruhl, A. Kranzmann, Int. J. Greenhouse Gas Control 9, 85 (2012).
- [8] K. Strafford, P. Datta, Corros. Sci. 35, 1053 (1993).
- [9] A. Ruhl, A. Kranzmann, Energy Procedia 37, 3131 (2013).
- [10] R. Niccole, A. Rist: Metall. Trans. B 10B, 429 (1979).
- [11] A. Hansson, M. Burriel, G. Garcia, S. Linderoth, M. Somers, Oxid. Met. 68, 23 (2007).
- [12] M. Pillis, L. Ramanathan, Mater. Res. 7, 97 (2004).
- [13] S. Mrowec, K. Przybylski, High Temp. Mater. Proc. 6, 1 (1984).
- [14] R. Lobnig, H. Schmidt, K. Hennesen, H. Grabke, Oxid. Met. 37, 81 (1992).
- [15] J. Hucińska, Adv. Materials Sc. 6, 16 (2006).
- [16] N. Folkeson, L.-G. Johansson, J.-E. Svensson, J. Electrochem. Soc. 154, C515 (2007).
- [17] J. Smith, O. Van der Biest, J. Corish, Oxid. Met. 24, 277 (1985).
- [18] M. Ritter, A landmark-based method for the geometrical 3D calibration of scanning microscopes, Berlin 2007.
- [19] I. Dörfel, H. Rooch, W. Österle, Thin Solid Films 520, 4275 (2012).
- [20] P. Marcus, Corrosion Mechanisms in Theory and Practice, New York 2002.
- [21] S. Mrowec, Oxid. Met. 44, 177 (1995).
- [22] T. Narita, K. Nishida, Oxid. Met. 6, 157 (1973).
- [23] S. Mrowec, T. Weber, T. Walec, Oxid. Met. 1, 93 (1969).
- [24] M. E. Kamel, A. Galtayries, P. Vermaut, B. Albinet, G. Foulonneau, X. Roumeau, B. Roncin, P. Marcus, Surf. Interface Anal. 42, 605 (2010).
- [25] I. Barin, O. Knacke, O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin (1977).
Uwagi
EN
The authors would like to thank BAM for founding. The work was supported also by the Ministry of Science and Higher Education of Poland under contract No. 11.11.110.295
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f9fcac1-d69b-413d-87a1-9abb7cb466dd