PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heart rate extraction from PPG signals using variational mode decomposition

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monitoring of vital signs using the photoplethysmography (PPG) signal is desirable for the development of home-based healthcare systems in the aspect of feasibility, mobility, comfort, and cost-effectiveness of the PPG device. In this paper, a new technique based on the variational mode decomposition (VMD) for estimating heart rate (HR) from the PPG signal is proposed. The VMD decomposes an input PPG signal into a number of modes or sub-signals. Afterward, the modes which are dominantly influenced by the HR information are selected and further processed for extracting HR of the patient. The proposed scheme is validated over a large number of recordings acquired from three independent databases, namely the Capnobase, MIMIC, and University of Queens Vital Sign (UQVS). Experiments are performed over different data length segments of the PPG recordings. Using the data length of 30 s, the proposed technique outperformed the existing techniques by achieving the lower median (1st quartile, 3rd quartile) values of root mean square error (RMSE) as 0.23 (0.19, 0.31) beats per minute (bpm), 0.41 (0.31, 0.56) bpm and 1.1 (0.9, 1.22) bpm for the Capnobase, MIMIC, and UQVS datasets, respectively. Since the shorter data length is more suitable for the clinical applications, the proposed technique also provided satisfactory agreement between the derived and reference HR values for the shorter data length segments. Perfor-mance results over three independent datasets suggest that the proposed technique can provide accurate and reliable HR information using the PPG signal recorded from the patients suffering from dissimilar problems.
Twórcy
  • Department of Electronics & Communication Engineering, National Institute of Technology, Rourkela, India
Bibliografia
  • [1] Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 2007;28:R1–39.
  • [2] Khalil A, Kelen G, Rothman RE. A simple screening tool for identification of community-acquired pneumonia in an inner city emergency department. Emerg Med J 2007;24:336–8.
  • [3] Kylänpää-Bäck M. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992;20:864–74.
  • [4] Goldhaber SZ, Visani L, De Rosa M. Acute pulmonary embolism: clinical outcomes in the International Cooperative Pulmonary Embolism Registry (ICOPER). Lancet 1999;353:1386–9.
  • [5] Zhang Z, Pi Z, Liu B. TROIKA: a general framework for heart rate monitoring using wrist-type photoplethysmographic signals during intensive physical exercise. IEEE Trans Biomed Eng 2015;62(2):522–31.
  • [6] Mannheimer PD. The light-tissue interaction of pulse oximetry. Anesth Analg 2007;105(6 Suppl):S10–7.
  • [7] Meredith DJ, Clifton D, Charlton P, Brooks J, Pugh CW, Tarassenko L. Photoplethysmographic derivation of respiratory rate: a review of relevant physiology. J Med Eng Technol 2012;36:1–7.
  • [8] Lindberg LG, Ugnell H, Öberg P. Monitoring of respiratory and heart rates using a fibre-optic sensor. Med Biol Eng Comput 1992;30:533–7.
  • [9] Nakajima K, Tamura T, Ohta T, Miike H, Oberg PA. Photoplethysmographic measurement of heart and respiratory rates using digital filters. Proceedings of the 15th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, 01; 1993. p. 1006.
  • [10] Nakajima K, Tamura T, Miike H. Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique. Med Eng Phys 1996;18:365–72.
  • [11] Johansson A, Öberg PÅ, Sedin G. Monitoring of heart and respiratory rates in newborn infants using a new photoplethysmographic technique. J Clin Monit Comput 1999;15:461–7.
  • [12] Olsson E, Ugnell H, Oberg P, Sedin G. Photoplethysmography for simultaneous recording of heart and respiratory rates in newborn infants. Acta Paediatr (Oslo Norway: 1992) 2000;89:853–61.
  • [13] Yan YS, Poon CCY, Zhang YT. Reduction of motion artifact in pulse oximetry by smoothed pseudo Wigner–Ville distribution. J Neuroeng Rehabil 2005;2(March (3)).
  • [14] Foo JYA, Wilson SJ. A computational system to optimise noise rejection in photoplethysmography signals during motion or poor perfusion states. Med Biol Eng Comput 2006;44(March (1)):140–5.
  • [15] Garde A, Karlen W, Dehkordi P, Ansermino J, Dumont G. Empirical mode decomposition for respiratory and heart rate estimation from the photoplethysmogram. Computing in Cardiology Conference, 2013. 2013. pp. 799–802.
  • [16] Garde A, Karlen W, Ansermino JM, Dumont GA. Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram. PLoS ONE 2014;9:1–11.
  • [17] Motin MA, Karmakar C, Palaniswami M. Ensemble empirical mode decomposition with principal component analysis: a novel approach for extracting respiratory rate and heart rate from photoplethysmographic signal. IEEE J Biomed Health Inform 2017;99.
  • [18] Yeh JR, Shieh JS, Huang NE. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv Adapt Data Anal 2010;2(April (2)):135–56.
  • [19] Nilsson L, Johansson A, Kalman S. Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique. J Clin Monit Comput 2000;16:309–15.
  • [20] Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Trans Signal Process 2014;62(3):531–44.
  • [21] Upadhyay A, Pachori RB. Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition. J Franklin Inst 2015;352(7):2679–707.
  • [22] Smruthy A, Suchetha M. Real-time classification of healthy and apnea subjects using ECG signals with variational mode decomposition. IEEE Sens J 2017;17(10):3092–9.
  • [23] Xue YJ, Cao JX, Wang DX, Du HK, Yao Y. Application of the variational-mode decomposition for seismic time-frequency analysis. IEEE J Sel Topics Appl Earth Observ Remote Sens 2016;9(March (8)):3821–31.
  • [24] Karlen W, Turner M, Cooke E, Dumont G, Ansermino J. CapnoBase: signal database and tools to collect, share and annotate respiratory signals. Annual Meeting of the Society for Technology in Anesthesia (STA), West Palm Beach. 2010. p. 25.
  • [25] Karlen W, Raman S, Ansermino JM, Dumont GA. Multiparameter respiratory rate estimation from the photoplethysmogram. IEEE Trans Biomed Eng 2013;60:1946–53.
  • [26] Moody GB, Mark RG. A database to support development and evaluation of intelligent intensive care monitoring. Computers in Cardiology, 1996. 1996. pp. 657–60.
  • [27] Liu D, Gorges M, Jenkins SA. The University of Queensland Vital Signs dataset: development of an accessible repository of anesthesia patient monitoring data for research. Anesth Analg 2012;114(3):584–9.
  • [28] Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed Eng 1985;32(3).
  • [29] Sharma H, Sharma KK. ECG-derived respiration using Hermite expansion. Biomed Signal Process Control 2018;39:312–26.
  • [30] Lee B, Han J, Baek HJ, Shin JH, Park KS, Yi WJ. Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry. Physiol Meas 2010;31:1585–603.
  • [31] Schack T, Sledz C, Muma M, Zoubir AM. A new method for heart rate monitoring during physical exercise using photoplethysmographic signals. EUSIPCO. 2015. pp. 2716–20.
  • [32] Wadehn F, Yue Zhao H-A, Loeliger. Heart rate estimation in photoplethysmogram signals using nonlinear model-based preprocessing. Computing in Cardiology Conference (CinC). 2015. pp. 633–6.
  • [33] Zhu S, Tan K, Zhang X, Liu Z, Liu B. MICROST: a mixed approach for heart rate monitoring during intensive physical exercise using wrist-type PPG signals. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2015), August; 2015.
  • [34] Zhang Z. Photoplethysmography-based heart rate monitoring in physical activities via joint sparse spectrum reconstruction. IEEE Trans Biomed Eng 2015;62(August (8)):1902–10.
  • [35] Sun B, Zhang Z. Photoplethysmography-based heart rate monitoring using asymmetric least squares spectrum subtraction and Bayesian decision theory. IEEE Sens J 2015;15(12):7161–8.
  • [36] Fujita Y, Hiromoto M, Sato T. PARHELIA: particle filter-based heart rate estimation from photoplethysmographic signals during physical exercise. IEEE Trans Biomed Eng 2018;65(1):189–98.
  • [37] Lee H, Chung H, Ko H, Lee J. Wearable multichannel photoplethysmography framework for heart rate monitoring during intensive exercise. IEEE Sens J 2018;18 (7):2983–93.
  • [38] Salehizadeh S, Dao D, Bolkhovsky J, Cho C, Mendelson Y, Chon K. A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor. Sensors 2016;16(1).
  • [39] Koshy AN, Sajeev JK, Nerlekar N, Brown AJ, Rajakariar K, Zureik M, et al. Utility of photoplethysmography for heart rate estimation among impatients. Intern Med J 2018;45 (5):587–91.
  • [40] Lee D, Kim J, Kwon S, Park K. Heart rate estimation from facial photoplethysmography during dynamic illuminance changes. Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE. 2015. pp. 2758–61.
  • [41] Sharma H, Sharma KK. ECG derived respiration based on iterated Hilbert transform and Hilbert vibration decomposition. Australas Phys Eng Sci Med 2018;41:429–43.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f96308f-9847-4f1b-b097-7142213b73bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.