PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast, non-destructive measurement of roof-bolt loads

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper discusses the pull-out laboratory tests and the monitoring of expansion-shell bolts with a length of 1.82 m. The bolts comprised the KE-3W expansion shell, a rod with a diameter of 0.0183 m and a profiled, circular plate with a diameter of 0.14 m, and a gauge of 0.006 m. The bolts were installed in a concrete block with a compressive strength of 75 MPa. The tests were conducted on a state-of-the-art test stand owned by the Department of Underground Mining of the AGH University of Science and Technology. The test stand can be used to test roof bolts on a geometric scale of 1:1 under static and rapidly varying loads. Also, the stand is suitable for testing rods measuring 5.5 m in length. The stand has a special feature of providing the ongoing monitoring of bolt load, displacement and deformation. The primary aim of the study was to compare the results recorded by two different measurement systems with the innovative Self-Excited Acoustic System (SAS) for measuring stress variations in roof bolts. In order to use the SAS, a special handle equipped with an accelerometer and exciter mounted to the nut or the upset end of the rod was designed at the Faculties of Mining and Geoengineering and Mechanical Engineering and Robotics of the AGH University of Science and Technology. The SAS can be used for non-destructive evaluation of performance of bolts around mining workings and in tunnels. Through laboratory calibration tests, roof bolt loads can be assessed using the in-situ non-destructive method.
Wydawca
Rocznik
Strony
93--101
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mining and Geoengineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] Adach-Pawelus, K., Butra, J. & Pawelus, D. (2017). An Attempt at Evaluation of the Remnant Influence On the Occurrence of Seismic Phenomena in a Room-and-Pillar Mining System with Roof Deflection. Studia Geotechnica et Mechanica. 39(2), 3-16. Retrieved August 1, 2017, from Walter de Gruyter GmbH: http:// sgem.pwr.wroc.pl. DOI: 10.1515/sgem-2017-0011.
  • [2] Burtan, Z., Zorychta, A., Cieślik, J. & Chlebowski, D. (2014). Influence of mining operating conditions on fault behavior. Archives of Mining Science. 59(3), 691-704. DOI: doi. org/10.2478/amsc-2014-0048.
  • [3] Chlebowski, D., Burtan, Z. & Zorychta, A. (2018). Evaluation of rockburst hazard under abandoned mine workings. Archives of Mining Science. 63(3), 687-699. Retrieved October 1, 2018, from Instytut Mechaniki Górotworu PAN: http://mining. archives.pl. DOI: 10.24425/123691.
  • [4] Dębkowski, R., Madziarz, M., Sawicki, W. & Osadczuk, T. (2007). Measurements of load acting on expansive roof bolts affected by seismic events. Rudy i Metale Nieżelazne. 52(8), 459-463.
  • [5] Fuławka, K., Mertuszka, P. & Pytel, W. (2018). Monitoring of the stability of underground workings in Polish copper mines conditions. E3S Web of Conferences. 29, 1-14. Retrieved January 31, 2018, from EDP Sciences: http://www.e3s-conferences.org. DOI: 10.1051/e3sconf/20182900008.
  • [6] Ivanović, A. & Neilson, R.D. (2013). Non-destructive testing of rock bolts for estimating total bolt length. International Journal of Rock Mechanics and Mining Sciences. 64, 36-43. DOI: 10.1016/j.ijrmms.2013.08.017.
  • [7] Kapusta, M. (2017). Wpływ osób dozoru górniczego na poprawę warunków bhp. Inżynieria Mineralna. 18(2), 183-193. DOI: 10.29227/IM-2017-02-20.
  • [8] Korzeniowski, W., Skrzypkowski, K. & Herezy, Ł. (2015). Laboratory method for evaluating the characteristics of expansion rock bolts subjected to axial tension. Archives of Mining Science. 60(1), 209 - 224. DOI: 10.1515/amsc-2015- 0014.
  • [9] Korzeniowski, W., Skrzypkowski, K. & Herezy Ł. (2018). Zdalny, nieelektryczny wskaźnik WK-2/8 wartości siły obciążającej kotew w wyrobisku górniczym. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk. 103, 53-64. DOI: 10.24425/123706.
  • [10] Korzeniowski, W., Skrzypkowski, K. & Zagórski, K (2017). Reinforcement of underground excavation with expansion shell rock bolt equipped with deformable component. Studia Geotechnica et Mechanica. 39(1), 39-52. Retrieved May 17, 2017, from Walter de Gruyter GmbH: http://sgem.pwr.wroc.pl. DOI: 0.1515/sgem-2017-0004.
  • [11] Korzeniowski, W., Skrzypkowski, K., Herezy, Ł., Kulik, M. & Zagórski K. (2016). Patent RP nr PAT.226879. Sposób pomiaru obciążenia kotwy oraz dynamometryczna podkładka kotwowa. Akademia Górniczo-Hutnicza, Kraków. Biuletyn Urzędu Patentowego.
  • [12] Kwaśniewski, J., Dominik, I., Konieczny, J. & Lalik K. (2014). Patent RP nr 219351. Urządzenie do monitorowania zmian naprężeń. Akademia Górniczo-Hutnicza, Kraków. Biuletyn Urzędu Patentowego.
  • [13] Kwaśniewski, J., Dominik I., Lalik K., Korzeniowski W., Zagórski K. & Skrzypkowski K. (2016). Rock bolts health monitoring using self-excited phenomenon. Diffusion and Defect Data – Solid State Data. Part B, Solid State Phenomena. 248, 186–191. DOI: 10.4028/www.scientific.net/SSP.248.186.
  • [14] Małkowski, P., Ostrowski, Ł. & Bochenek, P. (2017). Modelling the Small Throw Fault Effect on the Stability of a Mining Roadway and Its Verification by In Situ Investigation. Energies. 10,1-21. Retrieved December 7, 2017, from MDPI - Publisher of Open Access Journals: http://www.mdpi.com. DOI: 10.3390/ en10122082.
  • [15] Niedbalski, Z., Małkowski, P. & Majcherczyk, T. (2013). Monitoring of stand-and-roof-bolting support: design optimization. Acta Geodynamica and Geomaterialia. 10( 2), 215–226.
  • [16] Prusek, S., Turek, M., Rotkegel, M. & Witek, M. (2012). Wybrane rozwiązania konstrukcyjne wskaźników obciążenia kotwi. Przegląd Górniczy. 5, 37-44.
  • [17] Pytlik, A. & Pytlik, M. (2016). Czujniki do monitoring siły naciągu kotwi górniczych przy obciążeniach statycznych i dynamicznych. Przegląd Górniczy. 11, 38-47.
  • [18] Pytlik, A., Prusek S. & Masny, W. (2016). A methodology for laboratory testing of rockbolts used in underground mines under dynamic loading conditions. Journal of the Southern African Institute of Mining and Metallurgy. 116(12), 1101-1110. DOI: 0.17159/2411-9717/2016/v116n12a2.
  • [19] Skrzypkowski, K. (2018). A new design of support for bust-prone rock mass in underground ore mining. E3S Web of Conferences. 71, 1-9. Retrieved December 5, 2018, from EDP Sciences: http://www.e3s-conferences.org. DOI: 10.1051/ e3sconf/20187100006.
  • [20] Skrzypkowski K. (2018). Evaluation of rock bolt support for Polish hard rock mines. E3S Web of Conferences. 35, 1-8. Retrieved March 23, 2018, from EDP Sciences: http://www.e3s-conferences.org. DOI: 10.1051/e3sconf/20183501006.
  • [21] Skrzypkowski, K. (2018). Laboratory testing of a long expansion rock bolt support for energy-absorbing applications. E3S Web of Conferences. 29, 1-9. Retrieved January 31, 2018, from EDP Sciences: http://www.e3s-conferences.org. DOI: 10.1051/e3sconf/20182900004.
  • [22] Skrzypkowski, K., Korzeniowski, W., Zagórski, K. & Dudek, P. (2017). Application of long expansion rock bolt support in the underground mines of Legnica-Głogów copper district. Studia Geotechnica et Mechanica. 39(3), 47-56. Retrieved November 18, 2017, from Walter de Gruyter GmbH: http://sgem.pwr.wroc. pl. DOI: 10.1515/sgem-2017-0029.
  • [23] Song, G., Li, W., Wang, B. & Ho, S.C.M. (2017). A Review of Rock Bolt Monitoring Using Smart Sensors. Sensors. 17(4), 1-24. Retrieved April 5, 2017, from MDPI - Publisher of Open Access Journals: http://www.mdpi.com. DOI: 10.3390/s17040776.
  • [24] Staniek, A. (2005). Method for identification of grouting continuity of rock bolts. Archives of Mining Sciences. 50(3), 371-396.
  • [25] Tajduś, A., Cała, M., Tajduś, K. (2018). Seismicity and rock burst hazard assessment in fault zones: a case study. Archives of Mining Sciences. 63(3), 747-765. Retrieved October 1, 2018, from Instytut Mechaniki Górotworu PAN: http://mining. archives.pl. DOI: 10.24425/123695.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f941952-2d68-489a-9038-b7cfc5c6b949
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.