Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Symulacje numeryczne zmian wód gruntowych na przykładzie zbiornika Strużyna
Języki publikacji
Abstrakty
The article presents the results of a simulation of groundwater flow in the near vicinity of a small storage reservoir, Strużyna. The calculations of water flow in the porous area were conducted using HYDRUS 2D/3D software. The extent of the reservoir’s influence on the groundwaters in steady flow conditions was determined. The results were compared with field monitoring data. The field measurements confirmed the negligible impact of precipitation on groundwater level. It was found that the permeability of bottom reservoir has a significant impact on the extent of the reservoir influence. Increasing the groundwater level with simultaneously removal of low permeable soil created a flood risk to buildings near the reservoir. As a result the probable cause of fundament inundation in the near vicinity was indicated.
W artykule przedstawiono wyniki symulacji przepływu wód gruntowych w pobliżu niewielkiego zbiornika retencyjnego Strużyna. Obliczenia przepływu wody w obszarze porowatym przeprowadzono za pomocą oprogramowania HYDRUS 2D/3D. Określono zasięg oddziaływania zbiornika na wody gruntowe w warunkach stałego przepływu. Wyniki zostały porównane z pomiarami terenowymi, wskazały m.in. pomijalny wpływ deszczu na poziom wód gruntowych. Stwierdzono, że poziom uszczelnienia dna zbiornika ma istotny wpływ na wody gruntowe w jego otoczeniu. Zwiększenie poziomu piętrzenia przy jednoczesnym usunięciu z dna i ścian bocznych zbiornika gruntów o niskiej przenikalności stworzyło zagrożenie podtopieniem dla budynków zlokalizowanych w pobliżu zbiornika. W rezultacie wskazano prawdopodobną przyczynę zalania fundamentów w najbliższym otoczeniu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
141--156
Opis fizyczny
Bibliogr. 43 poz., tab., rys.
Twórcy
autor
- University of Life Sciences in Poznan, Poland
autor
- University of Life Sciences in Poznan, Poland
autor
- University of Life Sciences in Poznan, Poland
Bibliografia
- 1. Błażejewski, R., Nieć, J., Murat-Błażejewska, S., Zawadzki, P. (2018). Comparison of infiltration models with regard to design of rectangular infiltration trenches. Hydrological Sciences Journal, 62(11), 1707-1716. DOI:10.1080/02626667.2018.1523616.
- 2. Chalfen, M., & Czamara, A. (2007). Effect of Projected Small Storage Reservoir on Groundwater Levels in its Vicinity [In Polish]. Acta Sci. Pol. Formatio Circumiec- tus, 6(4), 3-16. Available from: http://www.formatiocircumiectus.actapol. net/pub/6_4_3.pdf (accessed on 8 March 2018)
- 3. Chmist, J., & Hämmerling, M. (2016). Selecting the most effective method of recultivation of water reservoirs using the AHP method [In Polish]. Acta. Sci. Pol., Formatio Circumiectusm, 15(2), 27-39. DOI: 10.15576/ASP.FC/2016.15.2.27
- 4. Dogrul, E. C., Kadir, T. N., Brush, C. F., Chung, F. I. (2016). Linking groundwater simulation and reservoir system analysis models: The case for California’s Central Valley. Environmental Modelling & Software, 77, 168-182. DOI:10.1016/ j.envsoft.2015.12.006
- 5. Fienen, M. N., Nolan, B. T., Feinstein, D. T. (2016). Evaluating the sources of water to wells: Three techniques for metamodeling of a groundwater flow model. Environ- mental Modelling & Software, 77, 95-107. DOI:10.1016/j.envsoft.2015.11.023
- 6. Finch, S. D., Radcliffe, D. E., West, L. T. (2008). Modelling trench sidewall and bottom flow in on-site wastewater systems. Journal of Hydrologic Engineering, 13, 693- 701. DOI:10.1061/(ASCE)1084-0699(2008)13:8(693)
- 7. Gedeon, M., Wemaere, I., Marivoet, J. (2007). Regional groundwater model of north-east Belgium. J Hydrology, 335, 133-139. DOI: 10.1016/j.jhydrol. 2006.11.006
- 8. Hämmerling, M., Walczak N., Kałauża T., Oliskiewicz-Krzywicka A. (2018). Operational Problems of Selected Elements of the Dobrzyca Barrage on the Głomia River. Rocznik Ochrona Środowiska, 20, 163-183.
- 9. Hassan, A.E. (2004). Validation of numerical ground water models used to guide decision making. Ground Water, 42, 277-290. DOI: 10.1111/j.1745-6584.2004.tb02674.x
- 10. Hopmans, J.W., Šimůnek, J., Bristow, K.L. (2002). Indirect estimation of soil thermal properties and water flux from heat pulse measurements: Geometry and dispersion effects. Water Resour. Res., 38, 7.1-7.14. DOI: 10.1029/2000WR000071
- 11. Ignatius, A.R., & Rasmussen, T.C. (2016). Small reservoir effects on headwater water quality in the rural-urban fringe, Georgia Piedmont, USA. Journal of Hydrology: Regional Studies, 8, 145-161. DOI: 10.1016/j.ejrh.2016.08.005
- 12. Kałuża, T., Zawadzki, P.;, Mądrawski, J., Stasik, R. (2017). Analysis of Impact of Strużyna Reservoir Modernization on Groundwater Level. Acta Sci. Pol. Formatio Circumiectus, 16(3), 153-169. DOI: 10.15576/ASP.FC/2017.16.3.153
- 13. Kałuża, T., Pietruczuk, K., Szoszkiewicz, K., Tyminski, T. (2014). Assessment and Classification of the Ecological Status of Rivers in Poland According to the Requirements of the Water Framework Directive. Wasserwirtschaft, 104(12), 24-29.
- 14. Kidmose, J., Nilsson, B., Engesgaard, P., Frandsen, M., Karan, S., Landkildehus, F., Søndergaard, M., Jeppesen, E. (2013). Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): Implications for lake ecological state and restoration. Hydrogeol. J., 21, 1787-1802. DOI:10.1007/ s10040-013-1043-7
- 15. Li, Y., Šimůnek, J., Wang, S., Zhang, W., Yuan, J. (2017). Simulating the Effects of Lake Wind Waves on Water and Solute Exchange across the Lakeshore Using Hydrus- 2D. Water, 9, 566. DOI:10.3390/w9080566.
- 16. Mandare, A.B., Ambast, S.K., Tyagi, N.K., Singh, J. (2008). On-farm water management in saline groundwater area under scarce canal water supply condition in the North- west India. Agric Water Manag, 95, 516-526. DOI: 10.1016/j.agwat. 2007.12.010
- 17. Mortensen, A.P., Hopmans, J.W., Mori, Y., Šimůnek, J. (2006). Multi-functional heat pulse probe measurements of coupled vadose zone flow and transport. Adv. Water Resour., 29, 250-267. DOI: 10.1016/j.advwatres.2005.03.017
- 18. Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res., 12, 513-522. DOI:10.1029/ WR012i003p00513
- 19. Nieć, J., & Spychała, M. (2014). Hydraulic conductivity estimation test impact on long- term acceptance rate and soil absorption system design. Water, 6, 2808-2820. DOI:10.3390/w6092808
- 20. Nieć, J., Spychała, M., Zawadzki, P. (2016). New approach to modelling of sand filter clogging by septic tank effluent. Journal of Ecological Engineering, 17(2), 97-107. DOI: 10.12911/22998993/62296
- 21. Nieć, J., Zawadzki, P., Walczak, Z. (2016). Jeziorsko Reservoir's front dam seepage anal- ysis carried out with the use of the Hydrus programme [In Polish]. Gospodarka Wodna, 9, 309-313.
- 22. Nieć, J., Zawadzki, P., Walczak, Z., Spychała, M. (2017). Calculating earth dam seepage using Hydrus software applications. Acta Sci. Pol., Formatio Circumiectus, 16 (3), 43-56. DOI:10.15576/ASP.FC/2017.16.3.43
- 23. Poeter, E. (2007). All models are wrong, how do we know which are useful? Ground Water, (45), 390-391. DOI: 10.1111/j.1745-6584.2007.00350.x
- 24. Querner, E.P., Jansen, P.C.,; van den Akker, J.J.H., Kwakernaak, C. (2012). Analysing water level strategies to reduce soil subsidence in Dutch peat meadows. J Hydrol- ogy, 446–447, 59-69. DOI: 10.1016/j.jhydrol.2012.04.029
- 25. Saito, H., Šimůnek, J., Hopmans, J.W., Tuli, A. (2007). Numerical evaluation of the heat pulse probe for simultaneous estimation of water fluxes and soil hydraulic and thermal properties. Water Resour. Res., 43, W07408 1-14. DOI:10.1029/ 2006WR005320
- 26. Shaw, G.D., White, E.S., Gammons, C.H. (2013). Characterizing groundwater – Lake interactions and its impact on lake water quality. J. Hydrol., 492, 69-78. DOI:10.1016/j.jhydrol.2013.04.018.
- 27. Šimůnek J., Šejna M., van Genuchten M. Th. J. (2018). New features of version 3 of the HYDRUS (2D/3D) computer software package. Hydrol. Hydromech., 66, 133-142. DOI:10.1515/johh-2017-0050
- 28. Šimůnek, J. (1999). Estimating hysteresis in the soil water retention function from cone permeameter experiments. Water Resour. Res., 35, 1329-1345. DOI:10.1029/1998WR900110
- 29. Šimůnek, J., Jarvis, N.C., van Genuchten, M.T., Gardenas, A. (2003). Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone. J Hydrology, 272, 14-35. DOI:10.1016/ S0022-1694(02)00252-4
- 30. Šimůnek, J., van Genuchten, M.Th. (1996). Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683-2696. DOI:10.1029/96WR01525
- 31. Šimůnek, J., van Genuchten, M.Th., Šejna, M. (2011). The HYDRUS software package for simulating the two- and three-dimensional movement of water heat and multiple solutes in variability – saturated media. Technical Manual, Version 2.0. PC-Progress Prague, Czech Republic.
- 32. Singh, R., Helmers, M.J., Zhiming, Q. (2006). Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa's tile landscapes. Agric Water Manag., 85, 221-332. DOI: 10.1016/j.agwat.2006.05.013
- 33. Smith, M.B., Seo, D.-J., Koren, V.I., Reed, S.M., Zhang, Z., Duan, Q. (2004). The distributed model intercomparison project (DMIP). motivation and experiment design. J Hydrology, 298, 4-26. DOI:10.1016/j.jhydrol.2004.03.040
- 34. Sojka, M., Kałuża. T., Siepak, M., Strzeliński, P. (2019). Heavy metals concentration in the bottom sediments of the mid-forest reservoirs [In Polish]. Sylwan, 163(8), 694-704. DOI: 10.26202/sylwan.2019038
- 35. Spychała, M., & Błażejewski, R. (2004). Sand filter clogging by septic tank effluent. Water Science and Technology, 48, 153-159.
- 36. Waldon, B. (2012). The conservation of small water reservoirs in the Krajeńskie Lakeland (North-West Poland). Limnologica – Ecology and Management of Inland Waters, 42, 320-327. DOI:10.1016/j.limno.2012.07.006
- 37. Wang, P., Pozdniakov, S. P., Vasilevskiy, P. Y. (2017). Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations. Journal of Hydrology, 555, 68-79. DOI:10.1016/j.jhydrol. 2017.10.004.
- 38. Wiatkowski, M. (2011). Influence of Słup dam reservoir on flow and quality of water in the Nysa Szalona River. Polish Journal of Environmental Studies, 20, 467–476.
- 39. Wiatkowski, M., Rosik-Dulewska, C., Kasperek, R. (2015). Inflow of pollutants to the Bukówka drinking water reservoir from the transboundary Bóbr river basin. Rocznik Ochrona Środowiska, 17, 316-336.
- 40. Wicher-Dysarz, J., & Kanclerz, J. (2012). Functioning of small lowland reservoirs with pre-dam zone on the example of Kowalskie and Stare Miasto Lakes [In Polish]. Rocznik Ochrona Środowiska, 4, 885-897.
- 41. Xanke, J., Jourde, H., Liesch, T., Goldscheider N. (2016). Numerical long-term assessment of managed aquifer recharge from a reservoir into a karst aquifer in Jordan. Journal of Hydrology, 540, 603-614. DOI:10.1016/j.jhydrol.2016.06.058
- 42. Zhang, M., Dong, Y., Sun, P. (2012). Impact of reservoir impoundment-caused groundwater level changes on regional slope stability: a case study in the Loess Plateau of West- ern China. Environ Earth Sci, 66, 1715-1725. DOI: 10.1007/ s12665-012-1728-6
- 43. Zubala, T. (2009). Influence of dam reservoir on the water quality in a small upland river. Ecohydrology & Hydrobiology, 9, 165-173.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f90050d-a861-4fed-b323-d79a3eb363a3