Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Redukcja emisji akustycznej szumu kawitacyjnego przy użyciu materiałów tekstylnych
Języki publikacji
Abstrakty
This article presents an examination of the acoustic noise level reduction in piping applications. Hydraulic cavitation is the source of the noise. In order to determine the noise level drop for the insulating material arranged around the pipe – cylindrical geometry – the acoustic spectrum was measured in the range of audible frequencies. Measurements were made for textile materials stacked with varying amounts of layers around the source of noise. There was a decrease in the noise level characteristics for mass law. An empirical formula describing the relative noise reduction for the materials under study was proposed.
Niniejszy artykuł przedstawia badania redukcji poziomu dźwięku poprzez zastosowanie materiałów tekstylnych wokół rurociągów. Źródłem hałasu jest szum kawitacyjny. W celu wyznaczenia spadku poziomu hałasu dla materiału izolacyjnego ułożonego wokół rury – geometria cylindryczna – zmierzono spektrum widma akustycznego w zakresie słyszalnym przez człowieka. Pomiary przeprowadzono dla materiałów tekstylnych ułożonych z różną ilością warstw wokół źródła szumów. Zaobserwowano spadek poziomu szumów charakterystyczny dla prawa masy. W ramach opracowania wyników wyznaczono wzór empiryczny opisujący względną redukcję poziomu szumów dla badanych materiałów.
Czasopismo
Rocznik
Tom
Strony
123--132
Opis fizyczny
Bibliogr. 23 poz., wz., tab., wykr., il.
Twórcy
autor
- Institute of Thermal and Process Engineering, Faculty of Mechanical Engineering, Cracow University of Technology
autor
- Faculty of Civil Engineering, Cracow University of Technology
Bibliografia
- [1] Brennen Ch.E., Hydrodynamics of Pumps, Oxford University Press, Oxford, 1994.
- [2] Moussou P., Lafon Ph., Potapov S., Paulhiac L., Tijsseling A.S., Industrial cases of FSI due to internal flows, Eindhoven: Technische Universiteit Eindhoven, 2004, https://pure.tue.nl/ws/files/2005596/577049.pdf
- [3] Ruchonnet N., Alligné S., Nicolet Ch., Avellan F., Cavitation influence on hydroacoustic resonance in pipe. Journal of Fluids and Structures, Vol. 28, 2012, 180–193.
- [4] Reisman G.E., McKinney E.A., Brennen Ch.E., Cloud cavitation on an oscillating hydrofoil, Proceedings of the 20th Symposium on Naval Hydrodynamics. National Academy Press, Washington DC 1994, 328–340.
- [5] Testud P., Moussou P., Hirschberg A., Aurégan Y., Noise generated by cavitating singlehole and multi-hole orifices in a water pipe, Journal of Fluids and Structures, Vol. 23, 2007, 163–189.
- [6] Jian-min ZHANG, Qing YANG, Yu-rong WANG, Wei-lin XU, Jian-gang CHEN, Experimental investigation of cavitation in a sudden expansion pipe, Journal of Hydrodynamics, Vol. 23, 2011, 348–352.
- [7] Tijsseling A.S., Vardy A.E., Fan D., Fluid-structure interaction and cavitation in a singleelbow pipe system, Journal of Fluids and Structures, Vol. 10, 1996, 395–420.
- [8] Tijsseling A.S., Vardy A.E., Fluid–structure interaction and transient cavitation tests in a T-piece pipe, Journal of Fluids and Structures, Vol. 20, 2005, 753–762.
- [9] Wójs K., Kawitacja w cieczach o różnych właściwościach reologicznych, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2004.
- [10] Borisyuk A.O., Experimental study of wall pressure fluctuations in rigid and elastic pipes behind an axisymmetric narrowing, Journal of Fluids and Structures, Vol. 26, 2010, 658–674.
- [11] Qi Datong, Mao Yijun, Liu Xiaoliang, Yuan Minjian, Experimental study on the noise reduction of an industrial forward-curved blades centrifugal fan, Applied Acoustics, Vol. 70, 2009, 1041–1050.
- [12] Doolan C.J., Moreau D.J., Flow-induced noise generated by sub-boundary layer steps, Experimental Thermal and Fluid Science, Vol. 72, 2015, 47–58.
- [13] Norton M.P., Bull M.K., Mechanisms of the generation of external acoustic radiation from pipes due to internal flow disturbances, Journal of Sound and Vibration, Vol. 94, 1984, 105–146.
- [14] Kuhn G.F., Morfey C.L., Noise due to fully developed turbulent flow exhausting from straight and bent pipes, Journal of Sound and Vibration, Vol. 44, 1976, 27–35.
- [15] Zhang T., Zhang Y.O., Ouyang H., Structural vibration and fluid-borne noise induced by turbulent flow through a 90o piping elbow with and without a guide vane, International Journal of Pressure Vessels and Piping, 2015, 1–12.
- [16] Celik S., Nsofor E.C., Studies on the flow-induced noise at the evaporator of a refrigerating system, Applied Thermal Engineering, Vol. 31, 2011, 2485–2493.
- [17] Masaaki Mori, Takayuki Masumoto, Kunihiko Ishihara, Study on acoustic, vibration and flow induced noise characteristics of T-shaped pipe with a square cross-section. Applied Acoustics, Vol. 120, 2017, 137–147.
- [18] Testud P., Moussou P., Hirschberg A., Auregan Y., Noise generated by cavitating singlehole and multi-hole orifices in a water pipe, Journal of Fluids and Structures, Vol. 23 2007, 163–189.
- [19] Peshkovsky S.L., Peshkovsky A.S., Shock-wave model of acoustic cavitation. Ultrasonics Sonochemistry, Vol. 15, 2008, 618–628.
- [20] Mazzocchi E., Pachoud A.J., Farhat M., Hachem F.E., DeCesare G., Schleiss A.J., Signal analysis of an actively generated cavitation bubble in pressurized pipes for detection of wall stiffness drops, Journal of Fluids and Structures, Vol. 65, 2016, 60–75.
- [21] Cowan J., Building Acoustics, [in:] Springer Handbook of Acoustics, T.D. Rossing (ed.), Springer Science, Leipzig 2007, 390, 387–425.
- [22] Bies D.A., Hansen C.H., Engineering Noise Control: Theory and Practice, Fourth Edition, 2003.
- [23] ISO 16283-1:2014, Acoustics – Field measurement of sound insulation in buildings and of building elements – Part 1: Airborne sound insulation, 2014.
Uwagi
EN
Section "Civil Engineering"
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f894598-1bf7-4c1a-bfe6-ea672fd6aa96