Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The purpose of this paper is to investigate the effect of temperature change on the Lamb wave-based SHM method. This study evaluates the Lamb wave method’s ability to detect damage to an AL2024-T3 sheet, assessed by a near-surface hole. Lamb waves are created via numerical simulation with the commercial Finite Element (FE) package ABAQUS. In this study, the Lamb wave-based SHM method using displacement responses is used. The results indicate that this method is able to detect a near-surface hole in the AL2024-T3 sheet as well as its location, with close approximation. Subsequently, the AL1100 sheet was investigated for changes in temperature from this method, which was evaluated over a temperature range of –200°C to 204°C. The results show that temperature change in the range of –200°C to 93°C has no effect on the displacement responses. However, the graphs related to temperature change of more than 149°C do not overlap with the reference temperature. Hence, it has been concluded that Lamb waves can be used as an SHM method in the temperature range of –200°C to 93°C without having to worry about the effects of temperature change on the results.
Czasopismo
Rocznik
Tom
Strony
329--335
Opis fizyczny
Bibliogr. 28 poz., tab., rys., wykr.
Twórcy
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bibliografia
- 1. Bar-Cohen Y., Mal A.K., Lih S-S., Chang Z. (1999). Composite materials stiffness determination and defects characterization using enhanced leaky Lamb wave dispersion data acquisition method. Proc. SPIE 3586, Nondestructive Evaluation of Aging Aircraft, Airports, and Aerospace Hardware III, CA, USA. DOI: 10.1117/12.339892
- 2. Liao M. (2019). Review of Aeronautical Fatigue and Structural Integrity Work in Canada (2017-2019). International Committee on Aeronautical Fatigue and Structural Integrity (ICAF), Report No.: LTR-SMM-2019-0063, Available at (October 2019): http://www.icaf2019.org/confdata/icaf2019/files/Raporty%20Delegat%C3%B3w/Canadian%20National%20Review%202019.pdf
- 3. Keulen C.J., Rocha B., Yildiz M., Suleman A. (2014)..Structural Health Monitoring Using Lamb Wave Based.Piezoelectric Networks and Phased Array Solutions. STO-EN-AVT-220: Structural Health Monitoring of Military Vehicles, EN-AVT-220-09. DOI: 10.14339/STO-EN-AVT-220.
- 4. Thanh P.V., Nhung P.T.T., Thuy L.T.M., Nhai N.H. (2015). Effect of Temperature on Ultrasonic Velocities, Attenuations, Reflection and Transmission Coefficients between Motor Oil and Carbon Steel Estimated by Pulse-echo Technique of Ultrasonic Testing Method. VNU Journal of Science: Mathematics – Physics, Vol. 31, No. 4, pp. 39-48.
- 5. Mohammadi Esfarjani S., Salehi M. (2017). Optimization the inner product vector method and its application to structural health monitoring. Journal of Vibroengineering, Vol. 19, No. 4, pp. 2578-2585..DOI: 10.21595/jve.2017.18062
- 6. Mohammadi Esfarjani S., Salehi M., Ghassemi A. (2017). Effect of the multiple damages and temperature changes on the natural frequency. Journal of Theoretical and Applied Mechanics, Vol. 55, No. 3, pp. 813-822. DOI: 10.15632/jtam-pl.55.3.813
- 7. Bottai G., Giurgiutiu V. (2005). Simulation of the Lamb wave interaction between piezoelectric wafer active sensors and host structure. SPIE's 12th.International Symposium on Smart Structures and Materials and 10th International Symposium on NDE for Health Monitoring and Diagnostics, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems Conference, San Diego, CA, 7-10 March. paper #5765-29. http://www.me.sc.edu/research/lamss/pdf/conferences/c114_spie2005_5765-29.pdf
- 8. Wilcox P.D. (1998)..Lamb wave inspection of large structures using permanently attached transducers, Ph. D. Thesis, Imperal college of science, Technology and medicine, university of London, page:19, March. Available; December 2019 at: http://www3.imperial.ac.uk/pls/portallive/docs/1/50549716.PDF
- 9. Janarthan B., Mitra M., Mujumdar P.M. (2012). Damage Detection in Stiffened Composite Panels Using Lamb Wave. 6th European Workshop on Structural Health Monitoring, Germany, July 3–6. http://www.ndt.net/article/ewshm2012/papers/we2a4.pdf
- 10. SunOrc H., Yi J., Xu Y., Wang Y., Qing X. (2019). Identification and Compensation Technique of Non-Uniform Temperature Field for Lamb Wave-and Multiple Sensors-Based Damage Detection. Sensors, Vol. 19, No. 13, pp. 2930; DOI: 10.3390/s19132930.
- 11. Sikdar S., Ostachowicz W. (2019). Ultrasonic Lamb wave‐based debonding monitoring of advanced honeycomb sandwich composite structures, Strain, Vol. 55, No. 1, pp. e12302. DOI: 10.1111/str.12302
- 12. Giurgiutiu V. (2005). Tuned Lamb wave excitation and detection with piezoelectric wafer active sensors for structural health monitoring, Journal of Intelligent Material Systems and Structures, Vol. 16, pp. 291–306. DOI: 10.1177/1045389X05050106
- 13. Willberg C., Duczek S., Vivar Perez J.M., Bin Ahmad Z.A. (2015). Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review. Applied Mechanics Reviews, Vol. 67, No. 1, pp. 1-20. DOI: 10.1115/1.4029539
- 14. Moragaspitiya H.N.P., Thambiratnam D.P., Perera N.J., T. Chan H.T. (2013). Development of a vibration based method to update axial shortening of vertical load bearing elements in reinforced concrete buildings. Engineering Structures, Vol. 46, pp. 49-61. DOI: 10.1016/j.engstruct.2012.07.010
- 15. Wenzhong Q.U., Li X. (2009). Finite Element Simulation of Lamb wave with Piezoelectric Transducers for Composite Plate Damage Detection. Advanced Materials Research, Vol. 79-82, pp. 1095-1098. DOI: 10.4028/www.scientific.net/AMR.79-82.1095
- 16. Nieuwenhuis J.H., Neumann J.J., Greve D.W., Oppenheim I.J. (2005). Simulation and Testing of Transducers for Lamb Wave Generation, 23rd Conference and Exposition on Structural Dynamics 2005 (IMAC - XXIII), Orlando, Florida, USA. 31 January - 3 February. https://pdfs.semanticscholar.org/3507/51a92a003f162cf112884fd8 940c8d5dfcff.pdf
- 17. Salamone S., Lanza di Scalea F., Bartoli I. (2009). Temperature effects in Lamb-wave structural health monitoring systems, Health Monitoring of Structural and Biological Systems 2009, edited by Tribikram Kundu, Proc. of SPIE 7295, 72950. DOI:.10.1117/12.815443.
- 18. Lanza di Scalea F., Salamone S. (2008). Temperature effects in Lamb-wave structural health monitoring systems, The Journal of the Acoustical Society of America, Vol. 124, No. 1, pp. 161-174. DOI: 10.1121/1.2932071
- 19. Blaise E., Chang F.-K. (2001). Built-in diagnostics for debonding in sandwich structures under extreme temperatures. In: Proceedings of the 3rd international workshop on structural health monitoring, Stanford University, Stanford, CA, September 12-14, pp. 154-163.
- 20. Konstantinidis G., Drinkwater B.W., Wilcox P.D. (2006). The temperature stability of guided wave structural health monitoring systems, Smart Materials and Structures, Vol. 15, pp. 967–976. DOI: 10.1088/0964-1726/15/4/010
- 21. Lu Y., Michaels J.E. (2005). A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations, Ultrasonics, Vol. 43, No. 9, pp. 717–73. DOI: 10.1016/j.ultras.2005.05.001
- 22. Michaels J.E., Michaels T.E. (2005). Detection of structural damage from the local temporal coherence of diffuse ultrasonic signals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 52, No. 10, pp. 1769–1782. DOI:.10.1109/TUFFC.2005.1561631
- 23. Dan C., Kudela P., Radzienski M., Ostachowicz W. (2014). Temperature Effects Compensation Strategy for Guided Wave Based Structural Health Monitoring. 6th International Symposium on NDT in Aerospace, Madrid, Spain. 12-14th November. http://www.ndt.net/events/aeroNDT2014/app/content/Paper/4_Dan.pdf
- 24. Dhutti A., Gan T.H., Balachandran W., Kanfoud J. (2018)..High temperature performance of ultrasonic guided wave system for structural health monitoring of pipeline. 7th Asia-Pacific Workshop on Structural Health Monitoring, Hong Kong SAR, P.R. China, November 12-15. https://www.ndt.net/article/apwshm2018/papers/17.pdf
- 25. Han S.J., Palazotto A.N., Leakeas C.L. (2009). FiniteElement Analysis of Lamb Wave Propagat in a Thin Aluminum Plate. Journal of Aerospace Engineering, Vol. 22, No. 2, pp. 185-197. DOI: 10.1061/(ASCE)08931321(2009)22:2(185).
- 26. Xia Y., Chen B., Weng Sh., Ni Y.Q., Xu Y.L. (2012). Temperature effect on vibration properties of civil structures: a literature review and case studies. Journal of Civil Structural Health Monitoring, Vol. 2, No. 1, pp. 29–46. DOI:10.1007/s13349-011-0015-7
- 27. Arun K., Gupta, Mamta J. (2014). Exponental temperature effect on frequencies of a rectangular plate of non-liner varying thickness: A quinitic spline technique. Journal of theoretical and applied mechanics, Vol. 52, No. 1, pp. 15-24.
- 28. Rambabu P., Eswara Prasad N., Kutumbarao V.V., Wanhill R.J.H. (2017). Aluminium Alloys for Aerospace Applications. Chapter 2 of book: Aerospace Materials and Material Technologies, Springer Singapor, Vol. 1: Aerospace Materials, Part I, 29-52, 46 and 47. DOI: 10.1007/978-981-10-2134-3_2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f884d57-4a73-405a-ada1-1893dd109275