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1. INTRODUCTION

Let N, Z, R denote the set of positive integers, all integers and all real numbers
respectively. Let us consider the second-order nonlinear difference equation with
a quasi-difference of the form

∆(rn∆(xn + pnxn−τ )) = anf(xn−σ) + bn, (1.1)

where τ ∈ N, σ ∈ Z are fixed. Here ∆ is the forward difference operator defined by

∆xn = xn+1 − xn,

(rn) is a sequence of positive real numbers, (an), (bn) and (pn) are sequences of real
numbers, and f is a real function.

Note, that equation (1.1) generalizes some well known types of classical difference
equations. For example the Sturm-Liouville difference equation

∆(rn∆xn) = anxn+1,
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Emden-Fowler difference equation of the form

∆2(xn − pnxn−τ ) = anx
α
n−σ,

or Legendre’s difference equation of the form

∆((n2 − 1)∆xn) = anxn.

Let
η = max(τ, σ).

By a solution of equation (1.1), we mean a sequence x which satisfies equality (1.1) for
n sufficiently large. If (1.1) is satisfied for all n ≥ η we say that x is a full solution of
(1.1). A solution x is said to be nonoscillatory if it is eventually positive or negative.
In the sequel, the space of all sequences x : N → R we denote by SQ. The Banach
space of all bounded sequences x ∈ SQ equipped with sup norm we denote by BS.
If x, y ∈ SQ, then xy and |x| denote the sequences defined by xy(n) = xnyn and
|x|(n) = |xn|, respectively.

Nonlinear difference equations are of paramount importance in applications. They
are used in mathematical models in diverse areas such as electrical engineering,
computer science, physics, economics, and biology. In particular, the second-order
difference equation of type (1.1) and its special cases were considered by many authors.
In 1987, Drozdowicz and Popenda [3] using Schauder’s fixed point theorem gave
necessary and sufficient conditions for the existence of an asymptotically constant
solution to the following nonlinear difference equation

∆2xn + pnf(xn) = 0.

The study of boundedness and convergences of solutions was continued by many
authors, also for equations with deviating arguments, with quasidifferences and of
neutral type.

For example, Thandapani et al. [17] established sufficient conditions for the asymp-
totic behavior of certain types of nonoscillatory solutions to the following equation

∆(rn∆xn) + anf(xn+1) = 0.

The above equation has been also studied in [16]. Using the Darbo’s fixed point
theorem the authors obtained the existence of an asymptotically ω-periodic solution
and Lyapunov type stability. In [11], for the equation of the form

∆(rn∆xn) + anf(xn−k) = bn

sufficient conditions under which for an arbitrary real constant there exists a solution
convergent to this constant and sufficient conditions for the existence of an asymptoti-
cally linear solution are obtained.

In [13], for a neutral type difference equation

∆2(xn + pxn−k) + f(n, xn) = 0
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there were found certain conditions, under which all nonoscillatory solutions have the
property xn = cn+ d+ o(1). Here the discrete Bihari type inequality was used. Liu et
al. in [8] proved the existence of uncountably many bounded nonoscillatory solutions
to the problem

∆(rn∆(xn + pxn−k)) + f(n, xn−d1n , . . . , xn−dkn) = cn

using Banach’s fixed point theorem, under the Lipschitz continuity condition. Agarwal
et al. [1] studied the existence of a nonoscillatory solution to the equation

∆(rn∆(xn + pxn−k)) + F (n+ 1, xn+1−σ) = 0,

where p ∈ R, |p| 6= 1. Recently the existence of bounded solutions to neutral difference
equations was also studied, for example, in [2, 4–7,9, 12,14] or [15].

In this paper, using Krasnoselskii’s type fixed point theorem and Schaueder’s fixed
point theorem, we present sufficient conditions, under which for an arbitrary real
constant c there exists a solution to (1.1) convergent to c. Moreover, our technic allow
us to control the degree of convergence of solutions. More precisely, we present sufficient
conditions, under which there exists a solution x such that xn = c+ o(ns), where s is
a given nonpositive real number. We consider the cases, when |pn| < 1, |pn| > 1 and
also when pn ≡ 1 or pn ≡ −1.

2. MAIN RESULTS

Let s ∈ (−∞, 0]. In this section, we present sufficient conditions under which for every
real constant c there exists a solution x of equation (1.1) such that xn = c+ o(ns),
where s is a given nonpositive real number. In the proof of the main results we will
need the following lemmas.

Lemma 2.1 ([10]). Assume k ∈ N, x, z, p : N −→ R, α ∈ (0, 1), s ∈ R,

|pn| ≤ α, zn = xn − pnxn−k

for large n and z(n) = o(ns). Then x(n) = o(ns).

Lemma 2.2. Assume s ∈ (−∞, 0], r, x, u ∈ SQ,

∞∑

j=1

1
jsrj

∞∑

i=j
|xi| <∞, un =

∞∑

j=n

1
rj

∞∑

i=j
|xi|.

Then un = o(ns).

Proof. Let g ∈ SQ,

gn =
∞∑

j=n

1
jsrj

∞∑

i=j
|xi|.
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By assumption, gn = o(1). We have

n−s|un| = n−s

∣∣∣∣∣∣

∞∑

j=n

1
rj

∞∑

i=j
xi

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∞∑

j=n

1
nsrj

∞∑

i=j
xi

∣∣∣∣∣∣

≤
∞∑

j=n

1
nsrj

∞∑

i=j
|xi| ≤

∞∑

j=n

1
jsrj

∞∑

i=j
|xi| = gn.

Hence n−s|un| = o(1) and we get un = nso(1) = o(ns).

The next lemma is a version of Krasnoselskii’s fixed point theorem.
Lemma 2.3. Assume that c ∈ R, γ ∈ SQ, lim

n→∞
γn = 0,

G = {x ∈ BS : |x− c| ≤ |γ|}, T1, T2 : G→ SQ, T1(G) + T2(G) ⊂ G,
T1 is a contraction and T2 is continuous. Then G is convex and compact and there
exists a point x ∈ G such that

x = T1x+ T2x.

Proof. The assertion is a consequence of [10, Lemma 2.2 and Theorem 2.2].

Remark 2.4. Assume c ∈ R, s ∈ (−∞, 0], γ ∈ SQ, γn = o(ns), and

K = {x ∈ BS : |x− c| ≤ |γ|}.
If x ∈ K, then |xn − c| ≤ |γn| = o(ns). Hence xn − c = o(ns) and we get

xn = c+ o(ns)

for any x ∈ K.
First, we consider equation (1.1) with lim

n→∞
pn ∈ (−1, 1).

Theorem 2.5. Assume s ∈ (−∞, 0] and
(h1) pn = p∗ + o(ns), p∗ ∈ (−1, 1),
(h2) f is continuous,
(h3)

∞∑
j=1

1
jsrj

∞∑
i=j
|ai| <∞ and

∞∑
j=1

1
jsrj

∞∑
i=j
|bi| <∞.

Then for any c ∈ R there exists a solution x of (1.1) such that xn = c+ o(ns).
Proof. Let c ∈ R and let us choose a positive real number d. There exists a constant
M > 0 such that

|f(t)| ≤M for any t ∈ [c− d, c+ d].
From (h1) it follows that there exists β ∈ R such that |pn| < β < 1 for sufficiently
large n. By (h3), the series

∞∑

n=1

1
rn

∞∑

j=n
(M |aj |+ |bj |)

is convergent.



On the convergence of solutions to second-order neutral difference equations 65

Let us denote

ρn := |c(p∗ − pn)|+
∞∑

i=n

1
ri

∞∑

j=i
(M |aj |+ |bj |)

and

γn :=
{

0 for n < η,

ρn + βγn−τ for n ≥ η.

By (h3) and Lemma 2.2, we have ρn = o(ns). Hence, by Lemma 2.1, we get γn = o(ns).
Choose an index n1 > η such that

γn < d, |pn| < β < 1 (2.1)

for every n ≥ n1. Let

G = {x ∈ BS : |x− c| ≤ γ and xn = c for n < n1}. (2.2)

Since γn < d for n ≥ n1, we have xn ∈ [c− d, c+ d] for all x ∈ G and n ∈ N. Hence
|f(xn)| ≤M for any x ∈ G, and n ∈ N. If x ∈ G, then

|anf(xn−σ) + bn| ≤M |an|+ |bn|

for any n ∈ N. Now, we define two mappings T1 and T2 : G→ BS as follows:

T1(x)(n) =
{

0 for n < n1,

cpn − pnxn−τ for n ≥ n1

and

T2(x)(n) =




c for n < n1,

c− cpn + cp∗ +
∞∑
i=n

1
ri

∞∑
j=i

(ajf(xj−σ) + bj) for n ≥ n1.

We will show that T1 and T2 satisfy the conditions of Lemma 2.3.
(i) If x, y ∈ G, then for n ≥ n1 we get

|(T1x+ T2y)(n)− c| =

∣∣∣∣∣∣
cpn − pnxn−τ − cpn + cp∗ +

∞∑

i=n

1
ri

∞∑

j=i
(ajf(yj−σ) + bj)

∣∣∣∣∣∣

≤ |pn| |xn−τ − c|+ |c (p∗ − pn)|+
∞∑

i=n

1
ri

∞∑

j=i
(M |aj |+ |bj |)

≤ βγn−τ + ρn = γn.

For n < n1 we have |(T1x+ T2y)(n)− c| = 0. Hence T1x+ T2y ∈ G.
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(ii) T1 is a contraction.
Let x, y ∈ G. Then, for n ≥ n1 using (h3), we get

|T1(x)(n)− T1(y)(n)| = |pn||xn−τ − yn−τ | ≤ β sup
n≥1
|xn − yn|

and for n < n1 we have |T1(x)(n)− T1(y)(n)| = 0. Thus

‖T1x− T1y‖ ≤ β‖x− y‖.

(iii) T2 is continuous.
Let x ∈ G, ε > 0. Since the function f is uniformly continuous on the interval
[c− d, c+ d], there exists δ > 0 such that for t, s ∈ [c− d, c+ d] and |t− s| < δ we have

|f(t)− f(s)| < ε. (2.3)

Now, let y ∈ G be such that ‖x− y‖ < δ. Then |xn − yn| < δ for every n ∈ N. Hence

|f(xn)− f(yn)| < ε for each n ∈ N.

Using (2.3) we have

‖T2x− T2y‖ = sup
n∈N

∣∣∣∣∣∣

∞∑

i=n

1
ri

∞∑

j=i
aj (f(xj−σ)− f(yj−σ))

∣∣∣∣∣∣
≤ ε

∞∑

i=1

1
ri

∞∑

j=i
|aj | .

Thus, by (h3), T2 is continuous.
Therefore, by Lemma 2.3, there exists x ∈ G such that x = T1x+ T2x. For n ≥ n1

we have

xn = c+ cp∗ − pnxn−τ +
∞∑

i=n

1
ri

∞∑

j=i
(ajf(xj−σ) + bj) . (2.4)

Hence

xn + pnxn−τ = c+ cp∗ +
∞∑

i=n

1
ri

∞∑

j=i
(ajf(xj−σ) + bj) .

Applying the operator ∆ to both sides of the above equation and multiplying by rn,
we get

rn∆(xn + pnxn−τ ) = −
∞∑

j=n
(ajf(xj−σ) + bj)

and applying ∆ for the second time we get

∆(rn∆(xn + pnxn−τ )) = anf(xn−σ) + bn

for n ≥ n1. Hence x is a solution of (1.1). Since x ∈ G and γn = o(ns), we have
xn = c+ o(ns).
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Under some additional conditions, we get from Theorem 2.5, that for any real
constant there exists a full solution of equation (1.1) convergent to this constant.
Corollary 2.6. Suppose that the assumptions of Theorem 2.5 are satisfied, pn 6= 0
for any n, and τ > σ. Then for every c ∈ R there exists a full solution x̄ of (1.1) such
that x̄n = c+ o(ns).
Proof. By Theorem 2.5, there exists a solution x of (1.1) such that xn = c + o(ns).
Then there exists an index n1 > η such that the equality (1.1) is satisfied for any
n ≥ n1. Using this x, we can construct a solution x̄ of (1.1), which satisfied (1.1)
for all n ≥ η. Let

x̄n = xn for n ≥ n1.

We can rewrite equation (2.4), in the following form

xn−τ = c+ cp∗

pn
− xn
pn

+ 1
pn

∞∑

i=n

1
ri

∞∑

j=i
(ajf(xj−σ) + bj) .

Since τ > σ, we have η = τ. We can find the first n1 − τ terms of (x̄n) starting with
putting n := n1 + τ − 1 in the above equation.

Corollary 2.7. Suppose that the assumptions of Theorem 2.5 are satisfied,
|pn| ≤ β < 1 for any n, and f is bounded. Then for every c ∈ R there exists a full
solution x̄ of (1.1) such that xn = c+ o(ns).
Proof. In the proof of Theorem 2.5 we can take d so large that the condition (2.1) is
satisfied for any n ≥ η.
Theorem 2.8. Assume s ∈ (−∞, 0] and
(h1) pn = p∗ + o(ns), p∗ ∈ (−∞,−1) ∪ (1,∞),
(h2) f is continuous,
(h3)

∞∑
j=1

1
jsrj

∞∑
i=j
|ai| <∞ and

∞∑
j=1

1
jsrj

∞∑
i=j
|bi| <∞.

Then for any c ∈ R there exists a solution x of (1.1) such that xn = c+ o(ns).
Proof. Let us choose a positive real number d. There exists a constantM > 0 such that
|f(t)| ≤ M for any t ∈ [c− d, c+ d]. Moreover, let β ∈ R be such that |pn| > β > 1
for sufficiently large n,

ρn := 1
β
|c(p∗ − pn+τ )|+ 1

β

∞∑

i=n+τ

1
ri

∞∑

j=i
(M |aj |+ |bj |)

and
γn := β

β − 1ρn.

There exists an index n1 ≥ η such that

γn <
d

β
, |pn| > β
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for every n ≥ n1. Let G be given by (2.2). We define the operators T1 and T2 : G→ BS
as follows:

T1(x)(n) =
{

0 for n < n1,
1

pn+τ
(c− xn+τ ) for n ≥ n1

and

T2(x)(n)=




c for n < n1,

c+ 1
pn+τ

(cp∗ − cpn+τ ) + 1
pn+τ

∞∑
i=n+τ

1
ri

∞∑
j=i

(ajf(xj−σ) + bj) for n ≥ n1.

If x, y ∈ G, then for n ≥ n1 we have

|(T1x+ T2y)(n)− c| ≤ 1
β
|xn+τ − c|+

1
β
|c (p∗ − pn+τ )|

+ 1
β

∞∑

i=n+τ

1
ri

∞∑

j=i
(M |aj |+ |bj |)

≤ 1
β
γn+τ + ρn+τ = γn+τ ≤ γn.

Therefore T1G + T2G ⊂ G. Obviously T1 is a contraction. Similarly as in the proof
of Theorem 2.5 the map T2 is continuous. By Lemma 2.3, there exists x ∈ G such that
x = T1x+ T2x. For n ≥ n1 we have

xn = c

pn+τ
− xn+τ
pn+τ

+ cp∗

pn+τ
+ 1
pn+τ

∞∑

i=n+τ

1
ri

∞∑

j=i
(ajf(xj−σ) + bj).

Multiplying by pn+τ we get

xn+τ + pn+τxn = c+ cp∗ +
∞∑

i=n+τ

1
ri

∞∑

j=i
(ajf(xj−σ) + bj).

Hence, replacing n by n− τ , we obtain

xn + pnxn−τ = c+ cp∗ +
∞∑

i=n

1
ri

∞∑

j=i
(ajf(xj−σ) + bj).

The rest of the proof is similar to that of Theorem 2.5.

Theorem 2.5 and Theorem 2.8 extend some results from [11].
In the next theorem, we consider the special case of (1.1), when pn ≡ 1. In the

proof of this theorem the Schauder’s fixed point theorem will be used.
Theorem 2.9. Assume s ∈ (−∞, 0] and
(h1) pn ≡ 1,
(h2) f is continuous,
(h3)

∞∑
j=1

1
jsrj

∞∑
i=j
|ai| <∞ and

∞∑
j=1

1
jsrj

∞∑
i=j
|bi| <∞.

Then for any c ∈ R there exists a solution x of (1.1) such that xn = c+ o(ns).
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Proof. Let c ∈ R and let us choose a positive real number d. There exists a constant
M > 0 such that |f(t)| ≤M for t ∈ [c− d, c+ d]. Let us denote

An =
∞∑

j=n

1
rj

∞∑

i=j
|ai|, Bn =

∞∑

j=n

1
rj

∞∑

i=j
|bi|.

By (h3) there exists an index n1 such that for n ≥ n1 we have

An ≤
d

2M , and Bn ≤
d

2 . (2.5)

We define a subset G of BS by

G = {x ∈ BS : |x− c| ≤MA+B and xn = c for n ≤ n1}.

By Lemma 2.3, G is a convex and compact subset of BS. Moreover, by (2.5), we have

xn ∈ [c− d, c+ d]

for any x ∈ G and any n. Now we define a map T : G→ BS, as follows:

T (x)(n) =





c for n < n1,

c+
∞∑
k=1

n+2kτ−1∑
j=n+(2k−1)τ

1
rj

∞∑
i=j

(aif (xi−σ) + bi) for n ≥ n1.

We will show that TG ⊂ G. It is obvious that
∞∑

k=1

n+2kτ−1∑

j=n+(2k−1)τ

1
rj

∞∑

i=j
|ai| ≤

∞∑

j=n

1
rj

∞∑

i=j
|ai|, (2.6)

∞∑

k=1

n+2kτ−1∑

j=n+(2k−1)τ

1
rj

∞∑

i=j
|bi| ≤

∞∑

j=n

1
rj

∞∑

i=j
|bi|. (2.7)

Moreover, if x ∈ G, then |xn − c| ≤ d for all n ∈ N. Hence |f(xn)| ≤ M for every
x ∈ G, n ∈ N. Therefore by (2.6) and (2.7), for n ≥ n1, we get

|T (x)(n)− c| =

∣∣∣∣∣∣

∞∑

k=1

n+2kτ−1∑

j=n+(2k−1)τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

∣∣∣∣∣∣

≤M
∞∑

j=n

1
rj

∞∑

i=j
|ai|+

∞∑

j=n

1
rj

∞∑

i=j
|bi| = MAn +Bn.

This gives Tx ∈ G for every x ∈ G. Hence TG ⊂ G.
The next step is to show the continuity of T . Choose ε > 0. There exists a δ > 0

such that

if t1, t2 ∈ [c− d, c+ d] and |t1 − t2| < δ, then |f(t1)− f(t2)| < ε.
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Let x, y ∈ G, ‖x− y‖ < δ. Then |xn − yn| < δ for any n and we get

‖Tx− Ty‖ = sup
n≥n1

|T (x)(n)− T (y)(n)|

≤ sup
n≥n1

∞∑

k=1

n+2kτ−1∑

j=n+(2k−1)τ

1
rj

∞∑

i=j
|ai||f(xi−σ)− f(yi−σ)| ≤ A1ε.

Hence T is continuous. By Schauder’s fixed point theorem there exists x ∈ G such
that Tx = x. For n ≥ n1 we have

xn = c+
∞∑

k=1

n+2kτ−1∑

j=n+2kτ−τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi) .

Hence

xn + xn−τ = 2c+
∞∑

k=1

n+2kτ−1∑

j=n+2kτ−τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

+
∞∑

k=1

n+2kτ−τ−1∑

j=n+2kτ−2τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

= 2c+
∞∑

k=1

n+2kτ−1∑

j=n+2kτ−2τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

= 2c+
∞∑

j=n

1
rj

∞∑

i=j
(aif (xi−σ) + bi) .

Therefore

∆ (xn + xn−τ ) = − 1
rn

∞∑

i=n
(aif (xi−σ) + bi) ,

rn∆ (xn + xn−τ ) = −
∞∑

i=n
(aif (xi−σ) + bi) ,

and finally
∆ (rn∆ (xn + xn−τ )) = anf (xn−σ) + bn.

Hence x is a solution of (1.1). By Lemma 2.2, MAn + Bn = o(ns). Since x ∈ G,
we have xn = c+ o(ns), that is our claim.

Note that, taking s = 0 in Theorems 2.5, 2.8, and 2.9 we get the following result.
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Theorem 2.10. Assume
(h1) lim

n→∞
pn = p∗, |p∗| 6= 1 or pn ≡ 1,

(h2) f is continuous,
(h3)

∞∑
j=1

1
rj

∞∑
i=j
|ai| <∞ and

∞∑
j=1

1
rj

∞∑
i=j
|bi| <∞.

Then for any c ∈ R there exists a solution x of (1.1) such that lim
n→∞

x(n) = c.

In the case, when pn ≡ −1 we need stronger summability conditions for the
sequences (an) and (bn).
Theorem 2.11. Assume s ∈ (−∞, 0] and
(h1) pn ≡ −1,
(h2) f is continuous,
(h3)

∞∑
j=1

1
js−1rj

∞∑
i=j
|ai| <∞ and

∞∑
j=1

1
js−1rj

∞∑
i=j
|bi| <∞.

Then for any c ∈ R there exists a solution x of (1.1) such that xn = c+ o(ns).
Proof. Let us choose a positive real number d. There exists a constant M > 0 such
that |f(t)| ≤M for t ∈ [c− d, c+ d]. Let us denote

An =
∞∑

j=n

j

rj

∞∑

i=j
|ai|, Bn =

∞∑

j=n

j

rj

∞∑

i=j
|bi|.

By (h3) there exists an index n1 such that for n ≥ n1 we have

An ≤
d

2M , and Bn ≤
d

2 . (2.8)

We define a subset G of BS by

G = {x ∈ BS : |x− c| ≤MA+B and xn = c for n ≤ n1}.

By Lemma 2.3, G is a convex and compact subset of BS. Moreover, by (2.8), we have
xn ∈ [c − d, c + d] for any x ∈ G and any n. Now, we define a map T : G → BS
as follows:

T (x)(n) =




c for n < n1,

c+
∞∑
k=1

∞∑
j=n+kτ

1
rj

∞∑
i=j

(aif (xi−σ) + bi) for n ≥ n1.

Note that ∞∑

k=1

∞∑

j=n+kτ

1
rj

∞∑

i=j
|ai| ≤

∞∑

j=n

j

rj

∞∑

i=j
|ai|, (2.9)

∞∑

k=1

∞∑

j=n+kτ

1
rj

∞∑

i=j
|bi| ≤

∞∑

j=n

j

rj

∞∑

i=j
|bi|. (2.10)
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We will show that TG ⊂ G. If x ∈ G, then |xn − c| ≤ d for all n ∈ N. Hence
|f(xn)| ≤M for every x ∈ G, n ∈ N. Therefore by (2.9) and (2.10), for n ≥ n1, we get

|T (x)(n)− c| =

∣∣∣∣∣∣

∞∑

k=1

∞∑

j=n+kτ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

∣∣∣∣∣∣

≤M
∞∑

j=n

j

rj

∞∑

i=j
|ai|+

∞∑

j=n

j

rj

∞∑

i=j
|bi| = MAn +Bn.

This gives Tx ∈ G for every x ∈ G. Hence TG ⊂ G.
Similarly as in the proof of Theorem 2.9 we can show the continuity of T . Hence,
by Schauder’s fixed point theorem there exists x ∈ G such that Tx = x. For n ≥ n1
we have

xn = c+
∞∑

k=1

∞∑

j=n+kτ

1
rj

∞∑

i=j
(aif (xi−σ) + bi) .

Therefore

xn − xn−τ =
∞∑

k=1

∞∑

j=n+kτ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

−
∞∑

k=1

∞∑

j=n+kτ−τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

=
∞∑

k=1

n+kτ−1∑

j=n+kτ−τ

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

=
∞∑

j=n

1
rj

∞∑

i=j
(aif (xi−σ) + bi)

and
∆ (xn − xn−τ ) = − 1

rn

∞∑

i=n
(aif (xi−σ) + bi) .

The rest of the proof is similar to that of Theorem 2.9 and is omitted.

3. EXAMPLES

In this section we present two examples to illustrate the obtained results.

Example 3.1. Let rn = (n + 1)n, pn = 1
n , τ = 1, σ = 0, s = 0, p∗ = 0, f(t) = t2

for any t,
an = − 2n

(n− 1)3 and bn = 0.
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Then equation (1.1) takes the form

∆
(

(n+ 1)n∆
(
xn + 1

n
· xn−1

))
= − 2n

(n− 1)3 x
2
n. (3.1)

We have
∞∑

n=1

1
rn

<∞,
∞∑

n=1
|an| <∞.

By Theorem 2.5, for any c ∈ R there exists a solution x of the equation (3.1) such that
xn = c+o(1). In fact, the sequence xn = 1− 1

n is a solution of (3.1) with such property.

Example 3.2. Let rn = 2n, pn = 8−n, τ = 3, σ = −1, f(t) = t for any t,

an = 21
32 · 4

−n, bn = 7419
128 · 16−n + 3

8 · 2
−n,

and let s ∈ (−∞, 0] be arbitrary but fixed. Since

∞∑

k=n
λk = λn

1− λ for any λ ∈ (−1, 1) and any n ∈ N,

and an ≤ 2−n for any n, we have

∞∑

j=1

1
jsrj

∞∑

i=j
|ai| ≤

∞∑

j=1

j−s

2j
∞∑

i=j
2−i =

∞∑

j=1

j−s

2j
2
2j = 2

∞∑

j=1

j−s

4j <∞.

Analogously
∞∑

j=1

1
jsrj

∞∑

i=j
|bi| <∞.

Hence, by Theorem 2.5, for any c ∈ R there exists a solution x of the equation

∆
(

2n∆
(
xn + 1

8n · xn−3

))
= 21

32 · 4
−nxn+1 + 7419

128 · 16−n + 3
8 · 2

−n (3.2)

such that xn = c+ o(ns). In fact, for any c ∈ R the sequence xn = c+ 4−n is a solution
of (3.2). Note that 4−n = o(ns).
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