PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Objective Edge Similarity Metric for denoising applications in MR images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Edge Similarity Metrics (ESMs) are necessary to objectively quantify the inadvertent blur at the edge pixels which occurs during denoising. They are helpful for evaluating edge-preserving capability of nonlinear filters. Most of the ESMs in literature, consider similarity of either strength of the edges or their direction individually. They lag in terms of concordance with subjective edge similarity ratings. An Objective Edge Similarity Metric (OESM) which considers all three attributes of edges; strength, direction and width together, is proposed in this paper. Pearson's Correlation shown by Gradient Magnitude Similarity Deviation (GMSD), Gradient Similarity Measure (GSM), Edge Strength Similarity Index Metric (ESSIM) and OESM with Subjective Edge Similarity Score (SESS) are ˗0.9669 ± 0.0028, 0.9566 ± 0.0053, 0.9507 ± 0.0057 and 0.9848 ± 0.0038, respectively. OESM is able to measure the degree of edge similarity between images more efficiently than GMSD, GSM and ESSIM. It reflects the perceptual edge similarity between images more accurately than GMSD, GSM and ESSIM.
Twórcy
  • Department of Electronics and Communication Engineering, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
  • Department of Electronics and Communication Engineering, R.M.D Engineering College, Kavaraipettai, Tamil Nadu, India
Bibliografia
  • [1] Zujovic J, Pappas TN, Neuhoff DL. Structural texture similarity metrics for image analysis and retrieval. IEEE Trans Image Process 2013;22(July (7)):2545–58.
  • [2] Fang Y, Fang Z, Yuan F, Yang Y, Yang S, Xiong NN. Optimized multioperator image retargeting based on perceptual similarity measure. IEEE Trans Syst Man Cybern Syst 2017;47(November (11)):2956–66.
  • [3] Brooks AC, Zhao X, Pappas TN. Structural similarity quality metrics in a coding context: exploring the space of realistic distortions. IEEE Trans Image Process 2008;17(August (8)):1261–73.
  • [4] Tan HL, Li Z, Tan YH, Rahardja S, Yeo C. A perceptually relevant MSE-based image quality metric. IEEE Trans Image Process 2013;22(November (11)):4447–59.
  • [5] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electron Lett 2008;44(June (13)):800–1.
  • [6] Bondzulic BP, Pavlovic BZ, Petrovic VS, Andric MS. Performance of peak signal-to-noise ratio quality assessment in video streaming with packet losses. Electron Lett 2016;52(6):454–6. 17 3 2016.
  • [7] Zhou Wang AC, Bovik HR Sheikh, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 2004;13(April (4)):600–12.
  • [8] Sampat MP, Wang Z, Gupta S, Bovik AC, Markey MK. Complex wavelet structural similarity: a new image similarity index. IEEE Trans Image Process 2009;18 (November (11)):2385–401.
  • [9] Zhang L, Zhang L, Mou X, Zhang D. FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 2011;20(August (8)):2378–86.
  • [10] Reisenhofer R, Bosse S, Kutyniok G, Wiegand T. A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Process Image Commun 2018;61:33–43.
  • [11] Grecova S, Morillas S. Perceptual similarity between color images using fuzzy metrics. J Vis Commun Image Represent 2016;34:230–5.
  • [12] Kang L, Hsu C, Chen H, Lu C, Lin C, Pei S. Feature-based sparse representation for image similarity assessment. IEEE Trans Multimedia 2011;13(October (5)):1019–30.
  • [13] Sun W, Liao Q, Xue J, Zhou F. SPSIM: a superpixel-based similarity index for full-reference image quality assessment. IEEE Trans Image Process 2018;27(September (9)):4232–44.
  • [14] Alkaabi S, Deravi F. Gradient direction similarity measure. Electron Lett 2003;39(November (23)):1643.
  • [15] Xue W, Zhang L, Mou X, Bovik AC. Gradient magnitude similarity deviation: a highly efficient perceptual image quality index. IEEE Trans Image Process 2014;23(February (2)):684–95.
  • [16] Liu A, Lin W, Narwaria M. Image quality assessment based on gradient similarity. IEEE Trans Image Process 2012;21 (April (4)):1500–12.
  • [17] Zhang X, Feng X, Wang W, Xue W. Edge strength similarity for image quality assessment. IEEE Signal Process Lett 2013;20(April (4)):319–22.
  • [18] Sattar F, Floreby L, Salomonsson G, Lovstrom B. Image enhancement based on a nonlinear multiscale method. IEEE Trans Image Process 1997;6(June (6)):888–95.
  • [19] Simi VR, Edla DR, Joseph J, Kuppili V. Analysis of controversies in the formulation and evaluation of restoration algorithms for MR images. Expert Syst Appl 2019;135:39–59.
  • [20] Kuppusamy PG, Joseph PGJ, Sivaraman J. A customized nonlocal restoration scheme with adaptive strength of smoothening for MR images. Biomed Signal Process Control 2019;49:160–72.
  • [21] Joseph J, Periyasamy R. A fully customized enhancement scheme for controlling brightness error and contrast in magnetic resonance images. Biomed Signal Process Control 2018;39:271–83.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f7dda33-c600-493f-a634-ed0972298704
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.