PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of carbon fiber surface treatment with HNO3 and KOH on the interfacial bonding of PMMA resin composite

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work studied the surface, interface state and physicochemical properties of HNO3-treated and KOH-treated carbon fiber. Poly(methyl methacrylate) (PMMA) composites were prepared by the autoclave molding process using surface-treated carbon fiber as reinforcements. The physical and chemical states of the carbon fiber surfaces and the micro-interface properties and interlaminar shear properties of the composites were studied. The results show that the surface of the HNO3-treated carbon fiber has more groove structure and higher surface roughness and thus forms a better physical bond with the resin matrix. Although the oxygen-containing functional groups of the two carbon fibers are equivalent, the surface oxygen of the HNO3-treated carbon fiber is relatively high, which is beneficial to form a better chemical bond with the matrix resin, and the interfacial shear strength is about 14% higher than that of the KOH-treated carbon fiber composite.
Wydawca
Rocznik
Strony
301--310
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • School of artificial intelligence and application, Shanghai Urban Construction Vocational College, Shanghai 201415, China
Bibliografia
  • [1] Han W, Zhang H-P, Tavakoli J, et al. Polydopamine as sizing on carbon fiber surfaces for enhancement of epoxy laminated composites. Composites Part A: Applied Science and Manufacturing. 2018;107: 626–632.
  • [2] Chen J, Wang K, Zhao Y. Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface. Compos Sci and Technol. 2018;154: 175–186.
  • [3] Feng P, Ma L, Wu G, et al. Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbonfiber/resin composites. Compos Sci Technol. 2020;200: 108336.
  • [4] Rani M, Choudhary P, Krishnan V, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Composites Part B: Engineering. 2021;215: 108768.
  • [5] Xing L, Feng Z, Bao J, et al. Facing opportunity and challenge of carbon fiber and polymer matrix composites industry development. Acta Materiae Compositae Sinica. 2020;37(11): 2700–2706.
  • [6] Zhang J, Chevali VS, Wa H, et al. Current status of carbon fibre and carbon fibre composites recycling. Composites Part B: Engineering. 2020;193: 108053.
  • [7] Rajak DK, Pagar DD, Menezes PL, et al. Fiberreinforced polymer composites: manufacturing, properties, and applications. Polymers. 2019;11(10): 1667.
  • [8] Ning L, Yang S, Leng Y, et al. Overview of the application of advanced composite materials on aircraft and the development of its manufacturing technology. Compos Sc and Eng. 2020;(5): 123–128.
  • [9] Yao S, Jin F, Rhee KY, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: a review. Composites Part B: Engineering. 2018;142: 241– 250.
  • [10] Paiva MC, Bernardo CA, Nardin M. Mechanical, surface and interfacial characterisation of pitch and PAN-based carbon fibres. Carbon. 2000;38(9): 1323–1337.
  • [11] Park SJ, Kim BJ. Roles of acidic functional groups of carbon fiber surfaces in enhancing interfacial adhesion behavior. Mater Sci Eng., A. 2005;408(1/2): 269–273.
  • [12] Jin L. Effect of surface modification on interfacial properties of carbon fiber/epoxy composites [dissertation]. Changchun: Changchun University of Technology; 2020.
  • [13] Tiwari S, Bijwe J. Surface treatment of carbon fibers – a review. Procedia Technology. 2014;14: 505–512.
  • [14] Zhou D, Gao L, Huo H, et al. Research progress of carbon fiber sizing agents for thermoplastic composites. Acta Materiae Compositae Sinica. 2020;37(8): 1785– 1795.
  • [15] Zhou X,WangANG Y, Kuang P, et al. Research progress of surface modification technology of carbon fiber. China Synthetic Fiber Industry. 2019; 42(4): 72–75.
  • [16] Fan D, Meng L, Liu K. The etching treatment of carbon fiber surface by supercritical CO2. Chemistry and Adhesion. 2013;35(2): 1–5.
  • [17] Wu B, Zheng G, Sun Y, et al. Surface properties of PANbased carbon fibers modified by electrochemical oxidization in organic electrolyte systems. J Mater Eng., 2016;44(9): 52-57.
  • [18] Yang P, Yuan J, He L. Carbon fibers surface modification and effects on the interfaces between fibers and resin matrices: a review. Materials Review. 2017;31(7): 129–136.
  • [19] Zhang A. Study on surface treatment of carbon fiber and properties of its composites. Chemical Enterprise Management. 2020;(3): 31–32.
  • [20] Yuan X. Surface treatments of carbon fibers and its effect on the interfacial properties of CFRP [dissertation]. Jinan: Shandong University; 2019.
  • [21] Jin Z, Han Z, Chang C, et al. Review of methods for enhancing interlaminar mechanical properties of fiberreinforced thermoplastic composites: interfacial modification, nano-filling and forming technology. Compos Sci Technol. 2022;228: 109660.
  • [22] Dzul-Cervantes MAA, Pacheco-Salazar OF, Can- Herrera LA, et al. Effect of moisture content and carbon fiber surface treatments on the interfacial shear strength of a thermoplastic-modified epoxy resin composites. J Mater Res Technol. 2020; 9(6): 15739–15749.
  • [23] Yamamoto T, Makino Y, Uematsu K. Improved mechanical properties of PMMA composites: Dispersion, diffusion and surface adhesion of recycled carbon fiber fillers from CFRP with adsorbed particulate PMMA., Adv Powder Technol. 2017;28(10): 2774–2778.
  • [24] He Y, Liu Y, Li B, et al. The effect of electrophoretic deposition p-aminobenzenesulfonamide grafted CNT on mechanical properties of carbon fiber filled polyamide 6 composite. Surf Interface Anal. 2022; 1–8.
  • [25] Chhetri S, Bougherara H., 2021. A comprehensive review on surface modification of UHMWPE fiber and interfacial properties. Composites A. 2021;140: 106146.
  • [26] Qiu J, Li J, Yuan Z, Zeng H, Chen X. Surface modification of carbon fibres for interface improvement in textile composites. Appl Compos Mater. 2018;25: 853–860.
  • [27] Sharma M, Gao S, Mäder E, Sharma H, Wei LY, Bijwe J. Carbonfiber surfaces and composite interphases. Compos Sci Technol. 2014;102: 35–50
  • [28] Hu S, Zhang S, Pan N, Hsieh YL. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources. 2014;270: 106–112
  • [29] Perera Jayawickramage RA, Ferraris JP. High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology. 2019;30: https://doi.org/10.1088/1361-6528/ aafe95.
  • [30] Ghosh S, Barg S, Jeong SM, Ostrikov K. Heteroatomdoped and oxygenfunctionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater. 2020;10(32): 2001239.
  • [31] Kim DH, Jekal S, Kim CG, Chu YR, Noh J, Kim MS, Lee N, Song WJ, Yoon CM. Facile enhancement of electrochemical performance of solid-state supercapacitor via atmospheric plasma treatment on PVA-based gelpolymer electrolyte. Gels. 2023;9: 351
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-7f73a24b-8db2-4630-a092-1f0897b3947e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.